Giter Site home page Giter Site logo

gintsuki9349's Projects

actionplotgeneration icon actionplotgeneration

A Tensorflow Implementation of the Eurographics 2019 Paper, Learning a Generative Model for Multi-Step Human-Object Interactions from Videos

actor-observer icon actor-observer

ActorObserverNet code in PyTorch from "Actor and Observer: Joint Modeling of First and Third-Person Videos", CVPR 2018

astgcn icon astgcn

Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting (ASTGCN) AAAI 2019

cvpr2018_attention icon cvpr2018_attention

Context Encoding for Semantic Segmentation MegaDepth: Learning Single-View Depth Prediction from Internet Photos LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume On the Robustness of Semantic Segmentation Models to Adversarial Attacks SPLATNet: Sparse Lattice Networks for Point Cloud Processing Left-Right Comparative Recurrent Model for Stereo Matching Enhancing the Spatial Resolution of Stereo Images using a Parallax Prior Unsupervised CCA Discovering Point Lights with Intensity Distance Fields CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation Learning a Discriminative Feature Network for Semantic Segmentation Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation Unsupervised Deep Generative Adversarial Hashing Network Monocular Relative Depth Perception with Web Stereo Data Supervision Single Image Reflection Separation with Perceptual Losses Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains EPINET: A Fully-Convolutional Neural Network for Light Field Depth Estimation by Using Epipolar Geometry FoldingNet: Interpretable Unsupervised Learning on 3D Point Clouds Decorrelated Batch Normalization Unsupervised Learning of Depth and Egomotion from Monocular Video Using 3D Geometric Constraints PU-Net: Point Cloud Upsampling Network Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer Tell Me Where To Look: Guided Attention Inference Network Residual Dense Network for Image Super-Resolution Reflection Removal for Large-Scale 3D Point Clouds PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image Fully Convolutional Adaptation Networks for Semantic Segmentation CRRN: Multi-Scale Guided Concurrent Reflection Removal Network DenseASPP: Densely Connected Networks for Semantic Segmentation SGAN: An Alternative Training of Generative Adversarial Networks Multi-Agent Diverse Generative Adversarial Networks Robust Depth Estimation from Auto Bracketed Images AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation DeepMVS: Learning Multi-View Stereopsis GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation Single-Image Depth Estimation Based on Fourier Domain Analysis Single View Stereo Matching Pyramid Stereo Matching Network A Unifying Contrast Maximization Framework for Event Cameras, with Applications to Motion, Depth, and Optical Flow Estimation Image Correction via Deep Reciprocating HDR Transformation Occlusion Aware Unsupervised Learning of Optical Flow PAD-Net: Multi-Tasks Guided Prediciton-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing Surface Networks Structured Attention Guided Convolutional Neural Fields for Monocular Depth Estimation TextureGAN: Controlling Deep Image Synthesis with Texture Patches Aperture Supervision for Monocular Depth Estimation Two-Stream Convolutional Networks for Dynamic Texture Synthesis Unsupervised Learning of Single View Depth Estimation and Visual Odometry with Deep Feature Reconstruction Left/Right Asymmetric Layer Skippable Networks Learning to See in the Dark

deepfuturegaze_gan icon deepfuturegaze_gan

Deep Future Gaze: Gaze Anticipation on Egocentric Videos Using Adversarial Networks

dense_flow icon dense_flow

Tools to extract dense optical flow from videos, based on OpenCV

ego-rnn icon ego-rnn

Attention is All We Need: Nailing Down Object-centric Attention for Egocentric Activity Recognition - BMVC 2018

egoconvnet icon egoconvnet

Code for CVPR 2016 paper "First Person Action Recognition Using Deep Learned Descriptors"

egotrajectoryfeatures icon egotrajectoryfeatures

Code for Trajectory Aligned Features For First Person Action Recognition. Pattern Recognition (PR), 2017.

gcnet icon gcnet

GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

hand_detection icon hand_detection

using Neural Networks (SSD) on Tensorflow. This repo documents steps and scripts used to train a hand detector using Tensorflow (Object Detection API). As with any DNN based task, the most expensive (and riskiest) part of the process has to do with finding or creating the right (annotated) dataset. I was interested mainly in detecting hands on a table (egocentric view point). I experimented first with the [Oxford Hands Dataset](http://www.robots.ox.ac.uk/~vgg/data/hands/) (the results were not good). I then tried the [Egohands Dataset](http://vision.soic.indiana.edu/projects/egohands/) which was a much better fit to my requirements. The goal of this repo/post is to demonstrate how neural networks can be applied to the (hard) problem of tracking hands (egocentric and other views). Better still, provide code that can be adapted to other uses cases. If you use this tutorial or models in your research or project, please cite [this](#citing-this-tutorial). Here is the detector in action. <img src="images/hand1.gif" width="33.3%"><img src="images/hand2.gif" width="33.3%"><img src="images/hand3.gif" width="33.3%"> Realtime detection on video stream from a webcam . <img src="images/chess1.gif" width="33.3%"><img src="images/chess2.gif" width="33.3%"><img src="images/chess3.gif" width="33.3%"> Detection on a Youtube video. Both examples above were run on a macbook pro **CPU** (i7, 2.5GHz, 16GB). Some fps numbers are: | FPS | Image Size | Device| Comments| | ------------- | ------------- | ------------- | ------------- | | 21 | 320 * 240 | Macbook pro (i7, 2.5GHz, 16GB) | Run without visualizing results| | 16 | 320 * 240 | Macbook pro (i7, 2.5GHz, 16GB) | Run while visualizing results (image above) | | 11 | 640 * 480 | Macbook pro (i7, 2.5GHz, 16GB) | Run while visualizing results (image above) | > Note: The code in this repo is written and tested with Tensorflow `1.4.0-rc0`. Using a different version may result in [some errors](https://github.com/tensorflow/models/issues/1581). You may need to [generate your own frozen model](https://pythonprogramming.net/testing-custom-object-detector-tensorflow-object-detection-api-tutorial/?completed=/training-custom-objects-tensorflow-object-detection-api-tutorial/) graph using the [model checkpoints](model-checkpoint) in the repo to fit your TF version. **Content of this document** - Motivation - Why Track/Detect hands with Neural Networks - Data preparation and network training in Tensorflow (Dataset, Import, Training) - Training the hand detection Model - Using the Detector to Detect/Track hands - Thoughts on Optimizations. > P.S if you are using or have used the models provided here, feel free to reach out on twitter ([@vykthur](https://twitter.com/vykthur)) and share your work! ## Motivation - Why Track/Detect hands with Neural Networks? There are several existing approaches to tracking hands in the computer vision domain. Incidentally, many of these approaches are rule based (e.g extracting background based on texture and boundary features, distinguishing between hands and background using color histograms and HOG classifiers,) making them not very robust. For example, these algorithms might get confused if the background is unusual or in situations where sharp changes in lighting conditions cause sharp changes in skin color or the tracked object becomes occluded.(see [here for a review](https://www.cse.unr.edu/~bebis/handposerev.pdf) paper on hand pose estimation from the HCI perspective) With sufficiently large datasets, neural networks provide opportunity to train models that perform well and address challenges of existing object tracking/detection algorithms - varied/poor lighting, noisy environments, diverse viewpoints and even occlusion. The main drawbacks to usage for real-time tracking/detection is that they can be complex, are relatively slow compared to tracking-only algorithms and it can be quite expensive to assemble a good dataset. But things are changing with advances in fast neural networks. Furthermore, this entire area of work has been made more approachable by deep learning frameworks (such as the tensorflow object detection api) that simplify the process of training a model for custom object detection. More importantly, the advent of fast neural network models like ssd, faster r-cnn, rfcn (see [here](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md#coco-trained-models-coco-models) ) etc make neural networks an attractive candidate for real-time detection (and tracking) applications. Hopefully, this repo demonstrates this. > If you are not interested in the process of training the detector, you can skip straight to applying the [pretrained model I provide in detecting hands](#detecting-hands). Training a model is a multi-stage process (assembling dataset, cleaning, splitting into training/test partitions and generating an inference graph). While I lightly touch on the details of these parts, there are a few other tutorials cover training a custom object detector using the tensorflow object detection api in more detail[ see [here](https://pythonprogramming.net/training-custom-objects-tensorflow-object-detection-api-tutorial/) and [here](https://towardsdatascience.com/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9) ]. I recommend you walk through those if interested in training a custom object detector from scratch. ## Data preparation and network training in Tensorflow (Dataset, Import, Training) **The Egohands Dataset** The hand detector model is built using data from the [Egohands Dataset](http://vision.soic.indiana.edu/projects/egohands/) dataset. This dataset works well for several reasons. It contains high quality, pixel level annotations (>15000 ground truth labels) where hands are located across 4800 images. All images are captured from an egocentric view (Google glass) across 48 different environments (indoor, outdoor) and activities (playing cards, chess, jenga, solving puzzles etc). <img src="images/egohandstrain.jpg" width="100%"> If you will be using the Egohands dataset, you can cite them as follows: > Bambach, Sven, et al. "Lending a hand: Detecting hands and recognizing activities in complex egocentric interactions." Proceedings of the IEEE International Conference on Computer Vision. 2015. The Egohands dataset (zip file with labelled data) contains 48 folders of locations where video data was collected (100 images per folder). ``` -- LOCATION_X -- frame_1.jpg -- frame_2.jpg ... -- frame_100.jpg -- polygons.mat // contains annotations for all 100 images in current folder -- LOCATION_Y -- frame_1.jpg -- frame_2.jpg ... -- frame_100.jpg -- polygons.mat // contains annotations for all 100 images in current folder ``` **Converting data to Tensorflow Format** Some initial work needs to be done to the Egohands dataset to transform it into the format (`tfrecord`) which Tensorflow needs to train a model. This repo contains `egohands_dataset_clean.py` a script that will help you generate these csv files. - Downloads the egohands datasets - Renames all files to include their directory names to ensure each filename is unique - Splits the dataset into train (80%), test (10%) and eval (10%) folders. - Reads in `polygons.mat` for each folder, generates bounding boxes and visualizes them to ensure correctness (see image above). - Once the script is done running, you should have an images folder containing three folders - train, test and eval. Each of these folders should also contain a csv label document each - `train_labels.csv`, `test_labels.csv` that can be used to generate `tfrecords` Note: While the egohands dataset provides four separate labels for hands (own left, own right, other left, and other right), for my purpose, I am only interested in the general `hand` class and label all training data as `hand`. You can modify the data prep script to generate `tfrecords` that support 4 labels. Next: convert your dataset + csv files to tfrecords. A helpful guide on this can be found [here](https://pythonprogramming.net/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/).For each folder, you should be able to generate `train.record`, `test.record` required in the training process. ## Training the hand detection Model Now that the dataset has been assembled (and your tfrecords), the next task is to train a model based on this. With neural networks, it is possible to use a process called [transfer learning](https://www.tensorflow.org/tutorials/image_retraining) to shorten the amount of time needed to train the entire model. This means we can take an existing model (that has been trained well on a related domain (here image classification) and retrain its final layer(s) to detect hands for us. Sweet!. Given that neural networks sometimes have thousands or millions of parameters that can take weeks or months to train, transfer learning helps shorten training time to possibly hours. Tensorflow does offer a few models (in the tensorflow [model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md#coco-trained-models-coco-models)) and I chose to use the `ssd_mobilenet_v1_coco` model as my start point given it is currently (one of) the fastest models (read the SSD research [paper here](https://arxiv.org/pdf/1512.02325.pdf)). The training process can be done locally on your CPU machine which may take a while or better on a (cloud) GPU machine (which is what I did). For reference, training on my macbook pro (tensorflow compiled from source to take advantage of the mac's cpu architecture) the maximum speed I got was 5 seconds per step as opposed to the ~0.5 seconds per step I got with a GPU. For reference it would take about 12 days to run 200k steps on my mac (i7, 2.5GHz, 16GB) compared to ~5hrs on a GPU. > **Training on your own images**: Please use the [guide provided by Harrison from pythonprogramming](https://pythonprogramming.net/training-custom-objects-tensorflow-object-detection-api-tutorial/) on how to generate tfrecords given your label csv files and your images. The guide also covers how to start the training process if training locally. [see [here] (https://pythonprogramming.net/training-custom-objects-tensorflow-object-detection-api-tutorial/)]. If training in the cloud using a service like GCP, see the [guide here](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_cloud.md). As the training process progresses, the expectation is that total loss (errors) gets reduced to its possible minimum (about a value of 1 or thereabout). By observing the tensorboard graphs for total loss(see image below), it should be possible to get an idea of when the training process is complete (total loss does not decrease with further iterations/steps). I ran my training job for 200k steps (took about 5 hours) and stopped at a total Loss (errors) value of 2.575.(In retrospect, I could have stopped the training at about 50k steps and gotten a similar total loss value). With tensorflow, you can also run an evaluation concurrently that assesses your model to see how well it performs on the test data. A commonly used metric for performance is mean average precision (mAP) which is single number used to summarize the area under the precision-recall curve. mAP is a measure of how well the model generates a bounding box that has at least a 50% overlap with the ground truth bounding box in our test dataset. For the hand detector trained here, the mAP value was **[email protected]**. mAP values range from 0-1, the higher the better. <img src="images/accuracy.jpg" width="100%"> Once training is completed, the trained inference graph (`frozen_inference_graph.pb`) is then exported (see the earlier referenced guides for how to do this) and saved in the `hand_inference_graph` folder. Now its time to do some interesting detection. ## Using the Detector to Detect/Track hands If you have not done this yet, please following the guide on installing [Tensorflow and the Tensorflow object detection api](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md). This will walk you through setting up the tensorflow framework, cloning the tensorflow github repo and a guide on - Load the `frozen_inference_graph.pb` trained on the hands dataset as well as the corresponding label map. In this repo, this is done in the `utils/detector_utils.py` script by the `load_inference_graph` method. ```python detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) print("> ====== Hand Inference graph loaded.") ``` - Detect hands. In this repo, this is done in the `utils/detector_utils.py` script by the `detect_objects` method. ```python (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) ``` - Visualize detected bounding detection_boxes. In this repo, this is done in the `utils/detector_utils.py` script by the `draw_box_on_image` method. This repo contains two scripts that tie all these steps together. - detect_multi_threaded.py : A threaded implementation for reading camera video input detection and detecting. Takes a set of command line flags to set parameters such as `--display` (visualize detections), image parameters `--width` and `--height`, videe `--source` (0 for camera) etc. - detect_single_threaded.py : Same as above, but single threaded. This script works for video files by setting the video source parameter videe `--source` (path to a video file). ```cmd # load and run detection on video at path "videos/chess.mov" python detect_single_threaded.py --source videos/chess.mov ``` > Update: If you do have errors loading the frozen inference graph in this repo, feel free to generate a new graph that fits your TF version from the model-checkpoint in this repo. Use the [export_inference_graph.py](https://github.com/tensorflow/models/blob/master/research/object_detection/export_inference_graph.py) script provided in the tensorflow object detection api repo. More guidance on this [here](https://pythonprogramming.net/testing-custom-object-detector-tensorflow-object-detection-api-tutorial/?completed=/training-custom-objects-tensorflow-object-detection-api-tutorial/). ## Thoughts on Optimization. A few things that led to noticeable performance increases. - Threading: Turns out that reading images from a webcam is a heavy I/O event and if run on the main application thread can slow down the program. I implemented some good ideas from [Adrian Rosebuck](https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/) on parrallelizing image capture across multiple worker threads. This mostly led to an FPS increase of about 5 points. - For those new to Opencv, images from the `cv2.read()` method return images in [BGR format](https://www.learnopencv.com/why-does-opencv-use-bgr-color-format/). Ensure you convert to RGB before detection (accuracy will be much reduced if you dont). ```python cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) ``` - Keeping your input image small will increase fps without any significant accuracy drop.(I used about 320 x 240 compared to the 1280 x 720 which my webcam provides). - Model Quantization. Moving from the current 32 bit to 8 bit can achieve up to 4x reduction in memory required to load and store models. One way to further speed up this model is to explore the use of [8-bit fixed point quantization](https://heartbeat.fritz.ai/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd). Performance can also be increased by a clever combination of tracking algorithms with the already decent detection and this is something I am still experimenting with. Have ideas for optimizing better, please share! <img src="images/general.jpg" width="100%"> Note: The detector does reflect some limitations associated with the training set. This includes non-egocentric viewpoints, very noisy backgrounds (e.g in a sea of hands) and sometimes skin tone. There is opportunity to improve these with additional data. ## Integrating Multiple DNNs. One way to make things more interesting is to integrate our new knowledge of where "hands" are with other detectors trained to recognize other objects. Unfortunately, while our hand detector can in fact detect hands, it cannot detect other objects (a factor or how it is trained). To create a detector that classifies multiple different objects would mean a long involved process of assembling datasets for each class and a lengthy training process. > Given the above, a potential strategy is to explore structures that allow us **efficiently** interleave output form multiple pretrained models for various object classes and have them detect multiple objects on a single image. An example of this is with my primary use case where I am interested in understanding the position of objects on a table with respect to hands on same table. I am currently doing some work on a threaded application that loads multiple detectors and outputs bounding boxes on a single image. More on this soon.

harusingstpn icon harusingstpn

Senior Project: Human Activity Recognition using Spatiotemporal Pyramid Network

ican icon ican

[BMVC 2018] iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.