Giter Site home page Giter Site logo

xcover's Introduction

xcover

A python package for solving exact cover with colours problems.

Installation

This package can be installed using pip:

pip install xcover

The only dependency is numba.

Usage

A simple example of an exact cover problem is the following. Given the set of 6 options 0:={1, 4, 7}; 1:={1, 4}; 2:={4, 5, 7}; 3:={3, 5, 6}; 4:={2, 3, 6, 7}; 5:={2, 7}, each of which are subsets of a set of seven items (the numbers 1 to 7), find a subset of the options which contains each item once and only once. Such a problem can be solved using the package as

from xcover import covers

options = [[1, 4, 7], [1, 4], [4, 5, 7], [3, 5, 6], [2, 3, 6, 7], [2, 7]]
print(list(covers(options)))
[[1, 3, 5]]

which outputs a list of possible exact covers. In this case there is a single solution: cover by the options 1:={1, 4}, 3:={3, 5, 6}, and 5:={2, 7}.

The covers function returns a python generator, an object that can be used in a for loop. This is useful in the case of multiple solutions if you want to do something immediately with each solution as it is calculated. If you just want to find the next solution you can use the next function on the generator.

Exact cover with colours

The package supports two extensions to the standard exact cover problem. The first extension is the addition of secondary items. These are items that do not need to be covered, but may be covered once if required. The second extension is the ability to colour the secondary items in each option. In the coloured case the secondary item may be covered multiple times, so long as it is coloured the same way in each cover. A simple example of an exact cover with colours problem is the following

primary = ["p", "q", "r"]
secondary = ["x", "y"]
options = [
    ["p", "q", "x", "y:A"],
    ["p", "r", "x:A", "y"],
    ["p", "x:B"],
    ["q", "x:A"],
    ["r", "y:B"],
]

print(list(covers(options, primary=primary, secondary=secondary, colored=True)))
[[3, 1]]

In this problem there are three primary items p, q, and r that must be covered, and two secondary items x and y that may be covered. The exact cover is given by the two sets {p, r, x:A, y} and {q, x:A}. In this cover the item x is covered twice, but that is acceptable as both instances are colored A. The xcover package denotes the colouring of items by a colon followed by a label.

Boolean arrays

An alternative way of specifying an exact cover problem is in terms of a boolean incidence matrix. The package provides a covers_bool function for directly solving such problems.

import numpy as np
from xcover import covers_bool

matrix = np.array([
    [1, 0, 0, 1, 0, 0, 1],
    [1, 0, 0, 1, 0, 0, 0],
    [0, 0, 0, 1, 1, 0, 1],
    [0, 0, 1, 0, 1, 1, 0],
    [0, 1, 1, 0, 0, 1, 1],
    [0, 1, 0, 0, 0, 0, 1]
    ], dtype=bool)
print(next(covers_bool(matrix)))
[1, 3, 5]

Dancing cells

The algorithm used for finding the exact covers is Donald Knuth's algorithm C which uses "dancing cells". A full description of the algorithm can be found in his draft manuscript. The main algorithm is in xcover.dancing_cells.algorithm_c and can be called directly if desired.

Numba

To accelerate the performance of the solver this package uses numba to perform Just In Time (JIT) compilation of the main algorithm. This means the first call to the solver may be slow (a few seconds) while numba compiles the function. However, later calls will be fast, as numba uses a cache to avoid repeated compilation. JIT compilation can be disabled by explicitly configuring numba before importing the xcover package.

from numba import config
config.DISABLE_JIT = True

Applications

Many recreational mathematical puzzles can be naturally cast as exact cover problems. Examples include pentomino tiling, sudoku, and the n-queens problem. Donald Knuth's Art of Computing volume 4B has an extensive discussion of many such problems. Exact cover problems are NP-complete which means solve times can get very long very quickly as problems get larger. Be warned!

License

This package is licenced under the GNU Lesser General Public License v3.0.

xcover's People

Contributors

johnrudge avatar

Stargazers

 avatar  avatar  avatar  avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.