Giter Site home page Giter Site logo

boston_housing's Introduction

Predicting Boston housing prices

This is an analysis of the classic Boston housing data set to predict housing prices using multiple regression.

Boston House Prices dataset

Notes


Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

:Attribute Information (in order):
    - `CRIM`     per capita crime rate by town
    - `ZN`       proportion of residential land zoned for lots over 25,000 sq.ft.
    - `INDUS`    proportion of non-retail business acres per town
    - `CHAS`     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
    - `NOX`      nitric oxides concentration (parts per 10 million)
    - `RM`       average number of rooms per dwelling
    - `AGE`      proportion of owner-occupied units built prior to 1940
    - `DIS`      weighted distances to five Boston employment centres
    - `RAD`      index of accessibility to radial highways
    - `TAX`      full-value property-tax rate per $10,000
    - `PTRATIO`  pupil-teacher ratio by town
    - `B`        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
    - `LSTAT`    % lower status of the population
    - `MEDV`     Median value of owner-occupied homes in $1000's

:Missing Attribute Values: None

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

References

  • Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
  • Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
  • many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

boston_housing's People

Contributors

eric-bunch avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.