Giter Site home page Giter Site logo

findpeaks's Introduction

findpeaks

Python PyPI Version License Github Forks GitHub Open Issues Project Status Downloads Downloads Sphinx

This library findpeaks aims to detect peaks in a 1-dimensional vector and 2-dimensional arrays (images) without making any assumption on the peak shape or baseline noise. To make sure that peaks can be detected across global and local heights, and in noisy data, multiple pre-processing and denoising methods are implemented.

Navigate to API documentations for more detailed and structured information.

Contents

Installation

  • Install findpeaks from PyPI (recommended). findpeaks is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
  • A new environment can be created as following:
pip install findpeaks

Import findpeaks package

from findpeaks import findpeaks

Example 1: 1D-vector low resolution

# Load library
from findpeaks import findpeaks
# Data
X = [9,60,377,985,1153,672,501,1068,1110,574,135,23,3,47,252,812,1182,741,263,33]
# Initialize
fp = findpeaks(lookahead=1)
results = fp.fit(X)
# Plot
fp.plot()

# Initialize with interpolation parameter
fp = findpeaks(lookahead=1, interpolate=10)
results = fp.fit(X)
fp.plot()

Example 2: 1D vector low resolution

# Load library
from findpeaks import findpeaks
# Data
X = [10,11,9,23,21,11,45,20,11,12]
# Initialize
fp = findpeaks(method='peakdetect', lookahead=1)
results = fp.fit(X)
# Plot
fp.plot()

fp = findpeaks(method='topology', lookahead=1)
results = fp.fit(X)
fp.plot()
fp.plot_persistence()

# Initialize with interpolate parameter
fp = findpeaks(method='peakdetect', lookahead=1, interpolate=10)
results = fp.fit(X)
fp.plot()

fp = findpeaks(method='topology', lookahead=1, interpolate=10)
results = fp.fit(X)
fp.plot()

Example 3: 1D-vector high resolution

# Load library
import numpy as np
from findpeaks import findpeaks

# Data
i = 10000
xs = np.linspace(0,3.7*np.pi,i)
X = (0.3*np.sin(xs) + np.sin(1.3 * xs) + 0.9 * np.sin(4.2 * xs) + 0.06 * np.random.randn(i))

# Initialize
fp = findpeaks(method='peakdetect')
results = fp.fit(X)
# Plot
fp.plot1d()

fp = findpeaks(method='topology', limit=1)
results = fp.fit(X)
fp.plot1d()
fp.plot_persistence()

Example 4: 2D-array (image) using default settings

# Import library
from findpeaks import findpeaks

# Import example
X = fp.import_example()
print(X)
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4, 0.4],
       [0. , 0. , 0. , 0. , 0. , 0. , 0.7, 1.4, 2.2, 1.8],
       [0. , 0. , 0. , 0. , 0. , 1.1, 4. , 6.5, 4.3, 1.8],
       [0. , 0. , 0. , 0. , 0. , 1.4, 6.1, 7.2, 3.2, 0.7],
       [..., ..., ..., ..., ..., ..., ..., ..., ..., ...],
       [0. , 0.4, 2.9, 7.9, 5.4, 1.4, 0.7, 0.4, 1.1, 1.8],
       [0. , 0. , 1.8, 5.4, 3.2, 1.8, 4.3, 3.6, 2.9, 6.1],
       [0. , 0. , 0.4, 0.7, 0.7, 2.5, 9. , 7.9, 3.6, 7.9],
       [0. , 0. , 0. , 0. , 0. , 1.1, 4.7, 4. , 1.4, 2.9],
       [0. , 0. , 0. , 0. , 0. , 0.4, 0.7, 0.7, 0.4, 0.4]])

# Initialize
fp = findpeaks(method='mask')
# Fit
fp.fit(X)

# Plot the pre-processing steps
fp.plot_preprocessing()
# Plot all
fp.plot()

# Initialize
fp = findpeaks(method='topology')
# Fit
fp.fit(X)

The input figure

The masking approach detects the correct peaks.

fp.plot()

Conversion from 2d to 3d mesh plots looks very nice. But there is a rough surface because of the low-resolution input data.

fp.plot_mesh()

The persistence plot appears to detect the right peaks.

fp.plot_persistence()

Example 5: 2D-array (image) with pre-processing steps

# Import library
from findpeaks import findpeaks

# Import example
X = fp.import_example()

# Initialize
fp = findpeaks(method='topology', scale=True, denoise=10, togray=True, imsize=(50,100), verbose=3)

# Fit
results = fp.fit(X)

# Plot all
fp.plot()

Show the plots:

fp.plot_preprocessing()

The masking does not work so well because the pre-processing steps includes some weighted smoothing which is not ideal for the masking approach.

fp.plot()

The mesh plot has higher resolution because the pre-processing steps caused some smoothing.

fp.plot_mesh()

The Persistence plot does show the detection of correct peaks.

fp.plot_persistence()

Denoising example

from findpeaks import findpeaks
fp = findpeaks()
img = fp.import_example('2dpeaks_image')
import findpeaks

# filters parameters
# window size
winsize = 15
# damping factor for frost
k_value1 = 2.0
# damping factor for lee enhanced
k_value2 = 1.0
# coefficient of variation of noise
cu_value = 0.25
# coefficient of variation for lee enhanced of noise
cu_lee_enhanced = 0.523
# max coefficient of variation for lee enhanced
cmax_value = 1.73

# Some pre-processing
# Resize
img = findpeaks.stats.resize(img, size=(300,300))
# Make grey image
img = findpeaks.stats.togray(img)
# Scale between [0-255]
img = findpeaks.stats.scale(img)

# Denoising
# fastnl
img_fastnl = findpeaks.stats.denoise(img.copy(), method='fastnl', window=winsize)
# bilateral
img_bilateral = findpeaks.stats.denoise(img.copy(), method='bilateral', window=winsize)
# frost filter
image_frost = findpeaks.frost_filter(img.copy(), damping_factor=k_value1, win_size=winsize)
# kuan filter
image_kuan = findpeaks.kuan_filter(img.copy(), win_size=winsize, cu=cu_value)
# lee filter
image_lee = findpeaks.lee_filter(img.copy(), win_size=winsize, cu=cu_value)
# lee enhanced filter
image_lee_enhanced = findpeaks.lee_enhanced_filter(img.copy(), win_size=winsize, k=k_value2, cu=cu_lee_enhanced, cmax=cmax_value)
# mean filter
image_mean = findpeaks.mean_filter(img.copy(), win_size=winsize)
# median filter
image_median = findpeaks.median_filter(img.copy(), win_size=winsize)

Plotting

import matplotlib.pyplot as plt
plt.figure(); plt.imshow(img_fastnl, cmap='gray'); plt.title('Fastnl'); plt.grid(False)
plt.figure(); plt.imshow(img_bilateral, cmap='gray'); plt.title('Bilateral')
plt.figure(); plt.imshow(image_frost, cmap='gray'); plt.title('Frost')
plt.figure(); plt.imshow(image_kuan, cmap='gray'); plt.title('Kuan')
plt.figure(); plt.imshow(image_lee, cmap='gray'); plt.title('Lee')
plt.figure(); plt.imshow(image_lee_enhanced, cmap='gray'); plt.title('Lee Enhanced')
plt.figure(); plt.imshow(image_mean, cmap='gray'); plt.title('Mean')
plt.figure(); plt.imshow(image_median, cmap='gray'); plt.title('Median')

Find peaks on the denoised image

from findpeaks import findpeaks
fp = findpeaks(scale=False, denoise=None, togray=False, imsize=False, verbose=3)
fp.fit(image_lee_enhanced)
fp.plot_persistence()
fp.plot_mesh(wireframe=False, title='image_lee_enhanced')

Find peaks and valleys in stock market data

# Import library
from findpeaks import findpeaks
# Initialize findpeaks with cearus method.
# The default setting is that it only return peaks-vallyes with at least 5% difference. We can change this using params
fp = findpeaks(method='caerus')
# Import example data
X = fp.import_example('facebook')
# Fit
results = fp.fit(X)
# Make the plot
fp.plot()

Citation

Please cite findpeaks in your publications if this is useful for your research. Here is an example BibTeX entry:

@misc{erdogant2020findpeaks,
  title={findpeaks},
  author={Erdogan Taskesen},
  year={2020},
  howpublished={\url{https://github.com/erdogant/findpeaks}},
}

References

Maintainer

Erdogan Taskesen, github: [erdogant](https://github.com/erdogant)
Contributions are welcome.
See [LICENSE](LICENSE) for details.

findpeaks's People

Contributors

bcbnz avatar erdogant avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.