Giter Site home page Giter Site logo

b2network / b2-zkevm-prover Goto Github PK

View Code? Open in Web Editor NEW

This project forked from 0xpolygonhermez/zkevm-prover

6.0 1.0 6.0 464.31 MB

zkEVM prover in C++

License: Other

Shell 0.01% JavaScript 0.01% C++ 99.80% Assembly 0.19% Makefile 0.01% Dockerfile 0.01%

b2-zkevm-prover's Introduction

zkEVM Prover

Built to interface with Ethereum Virtual Machines (EVM), the prover provides critical services through three primary RPC clients: the Aggregator client, Executor service, and StateDB service. The Aggregator client connects to an Aggregator server and harnesses multiple zkEVM Provers simultaneously, thereby maximizing proof generation efficiency. This involves a process where the Prover component calculates a resulting state by processing EVM transaction batches and subsequently generates a proof based on the PIL polynomials definition and their constraints. The Executor service offers a mechanism to validate the integrity of proposed EVM transaction batches, ensuring they adhere to specific workload requirements. The StateDB service interfaces with a system's state (represented as a Merkle tree) and the corresponding database, thus serving as a centralized state information repository.

Components

Aggregator client

  • It establishes a connection to an Aggregator server.
  • Multiple zkEVM Provers can simultaneously connect to the Aggregator server, thereby enhancing the proof generation capability.
  • Upon being invoked by the Aggregator service for batch proof generation:
    • The Prover component processes the input data (a set of EVM transactions), computes the resulting state, and creates a proof based on the PIL polynomial definitions and their constraints.
    • The Executor component integrates 14 state machines to process the input data and produce evaluations of the committed polynomials, essential for proof generation. Each state machine generates its computational evidence, and intricate calculations are passed on to the subsequent state machine.
  • The Prover component then invokes the Stark component to produce a proof for the committed polynomials from the Executor's state machines.
  • When tasked by the Aggregator service to produce an aggregated proof:
    • The Prover component amalgamates the results of two previously computed batch or aggregated proofs, supplied by the Aggregator, to create an aggregated proof.
  • When tasked by the Aggregator service to produce a final proof:
    • The Prover component uses the outcome of a prior aggregated proof, supplied by the Aggregator, to formulate a conclusive proof that can be validated.
  • The server interface for this service is delineated in the file named aggregator.proto.

Executor service

  • The Executor component processes the input data, which comprises a batch of EVM transactions, and computes the resulting state. Notably, no proof is produced.
  • This service offers a swift method to verify whether a proposed batch of transactions is correctly constructed and if it aligns with the workload that can be proven in a single batch.
  • When the Executor service invokes the Executor component, only the Main state machine is utilized. This is because the committed polynomials aren't needed, given that a proof isn't generated.
  • The service's interface is outlined in the executor.proto file.

StateDB service

  • This service provides an interface to access the system's state (represented as a Merkle tree) and the database where this state is stored.
  • Both the executor and the prover rely on it as the unified source of state. It can be utilized to retrieve specific state details, such as account balances.
  • The interface for this service is described in the statedb.proto file.

Compiling locally

Steps to compile zkevm-prover locally:

Clone repository

git clone --recursive https://github.com/0xPolygonHermez/zkevm-prover.git
cd zkevm-prover

Download necessary files

Download this very large archive (~75GB). It's a good idea to start this download now and have it running in the background:

./tools/download_archive.sh

The archive will take up an additional 115GB of space once extracted.

Install dependencies

The following packages must be installed.

Important dependency note: you must install libpqxx version 6.4.5. If your distribution installs a newer version, please compile libpqxx 6.4.5 and install it manually instead.

Ubuntu/Debian

apt update
apt install build-essential libbenchmark-dev libomp-dev libgmp-dev nlohmann-json3-dev postgresql libpqxx-dev libpqxx-doc nasm libsecp256k1-dev grpc-proto libsodium-dev libprotobuf-dev libssl-dev cmake libgrpc++-dev protobuf-compiler protobuf-compiler-grpc uuid-dev

openSUSE

zypper addrepo https://download.opensuse.org/repositories/network:cryptocurrencies/openSUSE_Tumbleweed/network:cryptocurrencies.repo
zypper refresh
zypper install -t pattern devel_basis
zypper install libbenchmark1 libomp16-devel libgmp10 nlohmann_json-devel postgresql libpqxx-devel ghc-postgresql-libpq-devel nasm libsecp256k1-devel grpc-devel libsodium-devel libprotobuf-c-devel libssl53 cmake libgrpc++1_57 protobuf-devel uuid-devel llvm llvm-devel libopenssl-devel

Fedora

dnf group install "C Development Tools and Libraries" "Development Tools"
dnf config-manager --add-repo https://terra.fyralabs.com/terra.repo
dnf install google-benchmark-devel libomp-devel gmp gmp-devel gmp-c++ nlohmann-json-devel postgresql libpqxx-devel nasm libsecp256k1-devel grpc-devel libsodium-devel cmake grpc grpc-devel grpc-cpp protobuf-devel protobuf-c-devel uuid-devel libuuid-devel uuid-c++ llvm llvm-devel openssl-devel 

Arch

pacman -S base-devel extra/protobuf community/grpc-cli community/nlohmann-json extra/libpqxx nasm extra/libsodium community/libsecp256k1

Compilation

You may first need to recompile the protobufs:

cd src/grpc
make
cd ../..

Run make to compile the main project:

make clean
make -j

To compile in debug mode, run make -j dbg=1.

Test vectors

./build/zkProver -c testvectors/config_runFile_BatchProof.json

StateDB service database

To use persistence in the StateDB (Merkle-tree) service you must create the database objects needed by the service. To do this run the shell script:

./tools/statedb/create_db.sh <database> <user> <password>

For example:

./tools/statedb/create_db.sh testdb statedb statedb

Docker

sudo docker build -t zkprover .
sudo docker run --rm --network host -ti -p 50051:50051 -p 50061:50061 -p 50071:50071 -v $PWD/testvectors:/usr/src/app zkprover input_executor.json

Usage

To run the Prover, supply a config.json file containing the parameters that help customize various Prover settings. By default, the Prover accesses the config.json file from the testvectors directory. Below are some of the key parameters, accompanied by their default values from the given config.json:

Parameter Description
runStateDBServer Enables StateDB GRPC service, provides SMT (Sparse Merkle Tree) and Database access
runExecutorServer Enables Executor GRPC service, provides a service to process transaction batches
runAggregatorClient Enables Aggregator GRPC client, connects to the Aggregator and process its requests
aggregatorClientHost IP address of the Aggregator server to which the Aggregator client must connect to
runProverServer Enables Prover GRPC service
runFileProcessBatch Processes a batch using as input a JSON file defined in the "inputFile" parameter
runFileGenProof Generates a proof using as input a JSON file defined in the "inputFile" parameter
inputFile Input JSON file with path relative to the testvectors folder
outputPath Output path to store the result files, relative to the testvectors folder
saveRequestToFile Saves service received requests to a text file
saveResponseToFile Saves service returned responses to a text file
saveInputToFile Saves service received input data to a JSON file
saveOutputToFile Saves service returned output data to a JSON file
databaseURL For the StateDB service, if the value is "local", data is stored in memory; otherwise, use the PostgreSQL format: "postgresql://<user>:<password>@<ip>:<port>/<database>", e.g., "postgresql://statedb:[email protected]:5432/testdb".
stateDBURL For the StateDB service, if the value is "local", a local client replaces the GRPC service. Use the format: "<ip>:<port>", e.g., "127.0.0.1:50061".

To execute a proof test:

  1. Modify the config.json file, setting the "runFileGenProof" parameter to "true". Ensure all other parameters are set to "false". If you prefer not to use a PostgreSQL database for the test, adjust the "databaseURL" to "local".
  2. For the "inputFile" parameter, specify the desired input test data file. As an example, the testvectors directory contains the input_executor.json file.
  3. Launch the Prover from the testvectors directory using the command: ../build/zkProver.
  4. The proof's result files will be saved in the directory defined by the "outputPath" configuration parameter.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.