Giter Site home page Giter Site logo

liteos-m-comments's Introduction

LiteOS-M Kernel

Introduction

OpenHarmony LiteOS-M is a lightweight operating system kernel designed for the Internet of Things (IoT) field. It features small footprint, low power consumption, and high performance. It has a simple code structure, including the minimum kernel function set, kernel abstraction layer, optional components, and project directory. The LiteOS-M kernel is divided into the hardware layer and hardware-irrelevant layers. The hardware layer provides a unified hardware abstraction layer (HAL) interface for easier hardware adaptation. A range of compilation toolchains can be used with different chip architectures to meet the expansion of diversified hardware and compilation toolchains in the Artificial Intelligence of Things (AIoT) field. Figure1 shows the architecture of the LiteOS-M kernel.

Figure 1 Architecture of the OpenHarmony LiteOS-M kernel

Directory Structure

The directory structure is as follows. For more details, see arch_spec.md.

/kernel/liteos_m
├── arch                 # Code of the kernel instruction architecture layer
│   ├── arm              # Code of the ARM32 architecture
│   │   ├── arm9         # Code of the ARM9 architecture
│   │   ├── cortex-m3    # Code of the cortex-m3 architecture
│   │   ├── cortex-m33   # Code of the cortex-m33 architecture
│   │   ├── cortex-m4    # Code of the cortex-m4 architecture
│   │   ├── cortex-m7    # Code of the cortex-m7 architecture
│   │   └── include      # Arm architecture public header file directory
│   ├── csky             # Code of the csky architecture
│   │   └── v2           # Code of the csky v2 architecture
│   ├── include          # APIs exposed externally
│   ├── risc-v           # Code of the risc-v architecture
│   │   ├── nuclei       # Code of the nuclei system technology risc-v architecture
│   │   └── riscv32      # Code of the risc-v architecture
│   └── xtensa           # Code of the xtensa architecture
│       └── lx6          # Code of the lx6 xtensa architecture
├── components           # Optional components
│   ├── backtrace        # Backtrace support
│   ├── cppsupport       # C++ support
│   ├── cpup             # CPU percent (CPUP)
│   ├── dynlink          # Dynamic loading and linking
│   ├── exchook          # Exception hooks
│   ├── fs               # File systems
│   ├── lmk              # Low memory killer functions
│   ├── lms              # Lite memory sanitizer functions
│   ├── net              # Networking functions
│   ├── power            # Power management
│   ├── shell            # Shell function
│   ├── fs               # File systems
│   └── trace            # Trace tool
├── drivers              # driver Kconfig
├── kal                  # Kernel abstraction layer
│   ├── cmsis            # CMSIS API support
│   └── posix            # POSIX API support
├── kernel               # Minimum kernel function set
│   ├── include          # APIs exposed externally
│   └── src              # Source code of the minimum kernel function set
├── targets              # Board-level projects
├── testsuites           # Kernel testsuites
├── tools                # Kernel tools
├── utils                # Common directory

Constraints

OpenHarmony LiteOS-M supports only C and C++.

Applicable architecture: See the directory structure for the arch layer.

As for dynamic loading module, the shared library to be loaded needs signature verification or source restriction to ensure security.

Usage

The OpenHarmony LiteOS-M kernel build system is a modular build system based on Generate Ninja (GN) and Ninja. It supports module-based configuration, tailoring, and assembling, and helps you build custom products. This document describes how to build a LiteOS-M project based on GN and Ninja. For details about the methods such as GCC+gn, IAR, and Keil MDK, visit the community websites.

Setting Up the Environment

Before setting up the environment for a development board, you must set up the basic system environment for OpenHarmony first. The basic system environment includes the OpenHarmony build environment and development environment. For details, see Setting Up Development Environment.

Obtaining the OpenHarmony Source Code

For details about how to obtain the source code, see Source Code Acquisition. This document assumes that the clone directory is ~/openHarmony after the complete OpenHarmony repository code is obtained.

Example projects

Qemu simulator: arm_mps2_an386、esp32、riscv32_virt、SmartL_E802. For details about how to compile and run, see qemu guide.

Bestechnic: bes2600. For details about how to compile and run, see Bestechnic developer guide.

Community Porting Project Links

The LiteOS-M kernel porting projects for specific development boards are provided by community developers. The following provides the links to these projects. If you have porting projects for more development boards, you can provide your links to share your projects.

  • Cortex-M3:

  • Cortex-M4:

  • Cortex-M7:

    • Nucleo-F767ZI https://gitee.com/harylee/nucleo_f767zi

      This repository provides the project code for porting the OpenHarmony LiteOS-M kernel to support the Nucleo-F767ZI development board. The code supports build in Ninja, GCC, and IAR modes.

Contribution

How to involve

Commit message spec

Liteos-M kernel coding style guide

How to contribute a chip based on Liteos-M kernel:

Board-Level Directory Specifications

Mini System SoC Porting Guide

Repositories Involved

Kernel Subsystem

kernel_liteos_m

liteos-m-comments's People

Contributors

bruceeezhao avatar cyd1st avatar hpline avatar jinuineli avatar kennethzhu avatar lanleinan avatar laojr1 avatar lengqinjie avatar lizangstc831 avatar lyb9 avatar mucorwang avatar openharmonyscm-noreply avatar ouyangkan avatar star-rain-zsl avatar strongwong avatar x-xiny avatar yansiraa avatar zhangqf1314 avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.