Giter Site home page Giter Site logo

ckoever / micropython-firebase-realtime-database Goto Github PK

View Code? Open in Web Editor NEW
23.0 5.0 19.0 120 KB

Firebase implementation for Micropython optimized for ESP32

License: MIT License

Python 100.00%
micropython micropython-esp32 firebase-realtime-database micropython-lib firebase

micropython-firebase-realtime-database's Introduction

Firebase implementation based on REST API optimized for the ESP32 version of Micropython based on firebase-micropython-esp32 from vishal-android-freak. It shouldn't be a problem to run it on other Micropython platforms. A board with SPIRAM is recommended.

status

Commands that are implemented

- get (equal GET)
- getfile (equal GET)*
- put (equal PUT)
- patch (equal PATCH)
- addto (equal POST)
- delete (equal DELETE)

*getfile writes the data to a file to avoid RAM overflow

Required modules

ujson, usocket, ussl, _thread, time

Preparations YouTube Tutorial

  1. Create a Firebase Realtime Database. (Console>Add Project>Realtime Database>Create Database)

In the end it should look something like this:

image

  1. Set rules to public * (from now the data can be read and changed by everyone ⚠️) *
{
  "rules": {
    ".read": true,
    ".write": true
  }
}
  1. Note the URL of the database
https://[PROJECT_ID].firebaseio.com/

Connect to Wifi

import os
import network
wlan = network.WLAN(network.STA_IF)
if not wlan.active() or not wlan.isconnected():
  wlan.active(True)
  wlan.connect("SSID", "PASSWD")
  while not wlan.isconnected():
    pass

Set the URL of the database

import ufirebase as firebase
firebase.setURL("https://[PROJECT_ID].firebaseio.com/")

Functions

setURL --- do this first!

firebase.setURL(URL)

Set the current Firebase URL.

get --------------------------------------

firebase.get(PATH, DUMP, bg=False, id=0, cb=None, limit=False)

Takes the given storage location PATH, gets the data from there and stores it as DUMP. The data can later be read out by firebase.[DUMP].

  • Optional run in the background with the keyword bg.

  • Set socket id with the keyword id. This makes it possible to establish multiple connections to the server instead of just one. Make sure the command runs in the background.

  • Set an callback function after getting the DATA.

    • Example:
    def hereweare(name, id, varname):
      print("\nname: "+str(name)+", id: "+str(id)+", value: "+str(eval("firebase."+varname)))
    firebase.get("testtag1", "VAR1", bg=True, id=0, cb=(hereweare, ("testtag1", "0", "VAR1")))
    firebase.get("testtag2", "VAR2", bg=True, id=1, cb=(hereweare, ("testtag2", "1", "VAR2"))) #runs at the same time
  • Limit the depth of the data to 1 with limit ⚠️ ONLY USE True/False (not 1/0).

    • Example:

    image

    firebase.get("a", "VAR1")
    print(firebase.VAR1) 
    #returns {'testlarge2': 'KJIHGFEDCBA', 'lol': 'ok', 'a': {'-MY_ntFnAhiTYygcraC6': [2, 2], '-MY_novcmzHOyexwij8B': '2', '-MY_nlKoV7jcYbTJMpzT': '2'}, 'testlarge1': 'ABCDEFGHIJK', 'testtag1': 1, 'testtag2': 2}
    firebase.get("a", "VAR2", limit=True)
    print(firebase.VAR2)
    #returns {'testlarge2': True, 'lol': True, 'testtag2': True, 'testlarge1': True, 'testtag1': True, 'a': True} 

getfile --------------------------------------

firebase.getfile(PATH, FILE, bg=False, id=0, cb=None, limit=False)

Takes the given storage location PATH, gets the data from there and stores it as file at the location FILE. Recommeded to download larger amounts of data to avoid ram overflow.

  • Optional run in the background with the keyword bg.
  • Set socket id with the keyword id. This makes it possible to establish multiple connections to the server instead of just one. Make sure the command runs in the background.
  • Set an callback function after getting the DATA.
    • Example:
    def herewefile(name, id, filename):
       LOCAL_FILE=open(str(filename))
       print("\nname: "+str(name)+", id: "+str(id)+", value: "+str(LOCAL_FILE.read()))
       LOCAL_FILE.close()
    firebase.getfile("testlarge1", "FILE1.txt", id=0, bg=1, cb=(herewefile, ("testlarge1", "0", "FILE1.txt")))
    firebase.getfile("testlarge2", "FILE2.txt", id=1, bg=1, cb=(herewefile, ("testlarge2", "1", "FILE2.txt"))) #runs at the same time
  • Limit the depth of the data to 1 with limit ⚠️ ONLY USE True/False (not 1/0).

put --------------------------------------

firebase.put(PATH, DATA, bg=True, id=0, cb=None)

Takes the given storage location PATH and uploads the given value DATA there.

  • Optional run in the background with the keyword bg.
  • Set socket id with the keyword id. This makes it possible to establish multiple connections to the server instead of just one. Make sure the command runs in the background. (Example at get)
  • Set an callback function after getting the DATA.
    • Example:
    firebase.put("testtag1", "1", id=0)
    firebase.put("testtag2", "2", id=1) #runs at the same time

patch --------------------------------------

firebase.patch(PATH, DATATAG, bg=True, id=0, cb=None)

Takes the given storage location PATH and patches the given key DATATAG there, without touching any other tag in the Database.

  • Example:
firebase.put("teststruct", {"tag1": "val1", "tag2": "val2"})
firebase.patch("teststruct", {"tag1": "new1"}) #only tag 1 will be changed

image

  • Optional run in the background with the keyword bg.
  • Set socket id with the keyword id. This makes it possible to establish multiple connections to the server instead of just one. Make sure the command runs in the background. (Example at get)
  • Set an callback function after patching the DATA.

addto --------------------------------------

firebase.addto(PATH, DATA, DUMP=None, bg=True, id=0, cb=None)

Takes the given storage location PATH and adds the given value DATA there, the randomly generated tag can be optionally stored in the DUMP variable.

  • Example:
firebase.addto("testsensor", 128)
firebase.addto("testsensor", 124)
firebase.addto("testsensor", 120, DUMP="tagname")
print(firebase.tagname) #returns '-MY7GTy4pp2LSpQp5775' (example)

image

  • Optional run in the background with the keyword bg.
  • Set socket id with the keyword id. This makes it possible to establish multiple connections to the server instead of just one. Make sure the command runs in the background. (Example at get)
  • Retuns the tag under which the data was saved.
  • Set an callback function after adding the DATA.

delete --------------------------------------

firebase.delete(PATH, bg=True, id=0, cb=None)

Takes the given storage location PATH deletes the data there.

  • Optional run in the background with the keyword bg.
  • Set socket id with the keyword id. This makes it possible to establish multiple connections to the server instead of just one. Make sure the command runs in the background. (Example at get)
  • Set an callback function after deleting the DATA.

Constants

FIREBASE_GLOBAL_VAR.GLOBAL_URL

firebase.FIREBASE_GLOBAL_VAR.GLOBAL_URL

Returns the current URL as string, do not change directly insted use firebase.setURL(URL)

FIREBASE_GLOBAL_VAR.GLOBAL_URL_ADINFO --------------------------------------

firebase.FIREBASE_GLOBAL_VAR.GLOBAL_URL_ADINFO

Additional information needed by usocket as list.

FIREBASE_GLOBAL_VAR.SLIST --------------------------------------

firebase.FIREBASE_GLOBAL_VAR.SLIST

Dict of sokets for background process.

Simple examples

Get data from the database

firebase.get("testtag", "DATAvariable")
print(firebase.DATAvariable) #None if no data found

firebase.getfile("testtag", "DATAfile.txt")
myfile=open("DATAfile.txt")
print(myfile.read())
myfile.close()

Upload data to the database --------------------------------------

firebase.put("testtag", "testtdata")
firebase.put("testtag", {"tag1": "data1", "tag2": "data2"})

firebase.addto("testtag", "data1")

Delete data from the database --------------------------------------

firebase.delete("testtag")

Functionality

A thread is created for each command* entered. There is a kind of waiting loop for these commands, so only one connection can be executed at a time per id.

If you make 4 get commands, id=0, these are processed one after the other, which means that the last command is executed much later.

If you make 4 get commands, half id=0, half id=1, these are processed 2*one after the other, which means that the last command is executed a bit earlier.

*exception if bg = False

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.