Giter Site home page Giter Site logo

ritsar's People

Contributors

dm6718 avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

ritsar's Issues

Improved PGA method

In talking with Hayden Callow, I was able to improve your existing autofocus2 method.

In it, I use the ML estimator which is unbiased. Incidentally, I find this method performs better than the existing method on my SAS data of the SASSED dataset.

Here is my updated version of autofocus2 method.

def autoFocus2(img, win = 'auto', win_params = [100,0.5]):
#  Originally written by Douglas Macdonald. 
#  Based upon:
#  D. Wahl, P. Eichel, D. Ghiglia, and J. Jakowatz, C.V., \Phase gradient 
#     autofocus-a robust tool for high resolution sar phase correction,"
#     Aerospace and Electronic Systems, IEEE Transactions on, vol. 30,
#     pp. 827{835, Jul 1994.
# Assumes image azimuth is vertical dimension and range increases in horizontal dim.

    #Derive parameters
    npulses = int(img.shape[0])
    nsamples = int(img.shape[1])

    #Initialize loop variables
    img_af = 1.0*img
    max_iter = 30
    af_ph = 0
    rms = []

    #Compute phase error and apply correction
    for iii in range(max_iter):

        #Find brightest azimuth sample in each range bin
        index = np.argsort(np.abs(img_af), axis=0)[-1]

        #Circularly shift image so max values line up
        f = np.zeros(img.shape)+0j
        for i in range(nsamples):
            f[:,i] = np.roll(img_af[:,i], int(npulses/2-index[i]))

        if win == 'auto':
            #Compute window width
            s = np.sum(f*np.conj(f), axis = -1)
            s = 10*np.log10(s/s.max())
            #For first two iterations use all azimuth data
            #and half of azimuth data, respectively
            if iii == 0:
                width = npulses
            #For all other iterations, use twice the 10 dB threshold
            else:
                width = np.sum(s>-10) 
            window = np.arange(npulses/2-width/2,npulses/2+width/2)
        else:
            #Compute window width using win_params if win not set to 'auto'
            width = int(win_params[0]*win_params[1]**iii)
            window = np.arange(npulses/2-width/2,npulses/2+width/2)
            if width<5:
                break

        window = window.astype('int')
        #Window image
        g = np.zeros(img.shape)+0j
        g[window] = f[window]

        #Fourier Transform
        G = sig.ift(g, ax=0)

        # ML method
        phi_dot = np.angle(np.sum(np.conj(G[:-1, :]) * G[1:, :], axis=1)) 
        phi = np.concatenate([[0],  np.cumsum(phi_dot)])

        #Remove linear trend
        t = np.arange(0,nsamples)
        slope, intercept, r_value, p_value, std_err = linregress(t,phi)
        line = slope*t+intercept
        phi = phi-line
        rms.append(np.sqrt(np.mean(phi**2)))

        if win == 'auto':
            if rms[iii]<0.01:
                break

        #Apply correction
        phi2 = np.tile(np.array([phi]).T,(1,nsamples))
        IMG_af = sig.ift(img_af, ax=0)
        IMG_af = IMG_af*np.exp(-1j*phi2)
        img_af = sig.ft(IMG_af, ax=0)

        #Store phase
        af_ph += phi

    print('number of iterations: %i'%(iii+1))

    return(img_af, np.flip(af_ph), rms)

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.