Giter Site home page Giter Site logo

rlreadinggroup's Introduction

RLReadingGroup

I am flying by the seat of my pants. I love all suggestions.

Papers in consideration:

Evolving Neural Networks through Augmenting Topologies

  • https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.5457&rep=rep1&type=pdf
  • Abstract: An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT) that outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.

An Introduction to Counterfactual Regret Minimization

  • http://modelai.gettysburg.edu/2013/cfr/cfr.pdf
  • Abstract: In 2000, Hart and Mas-Colell introduced the important game-theoretic algorithm of regret matching. Players reach equilibrium play by tracking regrets for past plays, making future plays proportional to positive regrets. The technique is not only simple and intuitive; it has sparked a revolution in computer game play of some of the most difficult bluffing games, including clear domination of annual computer poker competitions. Since the algorithm is relatively recent, there are few curricular materials available to introduce regret-based algorithms to the next generation of researchers and practitioners in this area... [Continues but is long]

Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (ReBeL)

  • https://arxiv.org/pdf/2007.13544.pdf
  • Abstract: The combination of deep reinforcement learning and search at both training and test time is a powerful paradigm that has led to a number of successes in single-agent settings and perfect-information games, best exemplified by AlphaZero. However, prior algorithms of this form cannot cope with imperfect-information games. This paper presents ReBeL, a general framework for self-play reinforcement learning and search that provably converges to a Nash equilibrium in any two-player zerosum game. In the simpler setting of erfect-information games, ReBeL reduces to an algorithm similar to AlphaZero. Results in two different imperfect-information games show ReBeL converges to an approximate Nash equilibrium. We also show ReBeL achieves superhuman performance in heads-up no-limit Texas hold’em poker, while using far less domain knowledge than any prior poker AI.

Pluribus

  • https://www.cs.cmu.edu/~noamb/papers/19-Science-Superhuman.pdf
  • Abstract In recent years there have been great strides in artificial intelligence (AI), with games often serving as challenge problems, benchmarks, and milestones for progress. Poker has served for decades as such a challenge problem. Past successes in such benchmarks, including poker, have been limited to two-player games. However, poker in particular is traditionally played with more than two players. Multiplayer games present fundamental additional issues beyond those in two-player games, and multiplayer poker is a recognized AI milestone. In this paper we present Pluribus, an AI that we show is stronger than top human professionals in six-player no-limit Texas hold’em poker, the most popular form of poker played by humans.

Mastering the game of Go with deep neural networks and tree search (AlphaGo)

  • https://www.nature.com/articles/nature16961
  • Abstract: The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

Mastering the game of Go without human knowledge (AlphaGo Zero)

  • https://www.nature.com/articles/nature24270
  • Abstract: A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)

  • https://arxiv.org/abs/1911.08265
  • Abstract: Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.

DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker

  • https://arxiv.org/abs/1701.01724
  • Abstract: Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker is the quintessential game of imperfect information, and a longstanding challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated with statistical significance professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce more difficult to exploit strategies than prior approaches.

rlreadinggroup's People

Contributors

dschonholtz avatar

Watchers

 avatar  avatar

rlreadinggroup's Issues

First paper?!?

/polls "Evolving Neural Networks through Augmenting Topologies" "An Introduction to Counterfactual Regret Minimization" "Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (ReBeL)" "Superhuman AI for multiplayer poker (Pluribus)" "Mastering the game of Go with deep neural networks and tree search (AlphaGo)" "Mastering the game of Go without human knowledge (AlphaGo Zero)" "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)" "DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker"

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.