Giter Site home page Giter Site logo

dumpmemory / accelerate Goto Github PK

View Code? Open in Web Editor NEW

This project forked from huggingface/accelerate

0.0 0.0 0.0 1.99 MB

A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

License: Apache License 2.0

Python 99.47% Makefile 0.28% Dockerfile 0.24% Shell 0.01%

accelerate's Introduction



License Documentation GitHub release Contributor Covenant

Run your *raw* PyTorch training script on any kind of device

Easy to integrate

๐Ÿค— Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

๐Ÿค— Accelerate abstracts exactly and only the boilerplate code related to multi-GPUs/TPU/fp16 and leaves the rest of your code unchanged.

Here is an example:

  import torch
  import torch.nn.functional as F
  from datasets import load_dataset
+ from accelerate import Accelerator

+ accelerator = Accelerator()
- device = 'cpu'
+ device = accelerator.device

  model = torch.nn.Transformer().to(device)
  optimizer = torch.optim.Adam(model.parameters())

  dataset = load_dataset('my_dataset')
  data = torch.utils.data.DataLoader(dataset, shuffle=True)

+ model, optimizer, data = accelerator.prepare(model, optimizer, data)

  model.train()
  for epoch in range(10):
      for source, targets in data:
          source = source.to(device)
          targets = targets.to(device)

          optimizer.zero_grad()

          output = model(source)
          loss = F.cross_entropy(output, targets)

-         loss.backward()
+         accelerator.backward(loss)

          optimizer.step()

As you can see in this example, by adding 5-lines to any standard PyTorch training script you can now run on any kind of single or distributed node setting (single CPU, single GPU, multi-GPUs and TPUs) as well as with or without mixed precision (fp16).

In particular, the same code can then be run without modification on your local machine for debugging or your training environment.

๐Ÿค— Accelerate even handles the device placement for you (which requires a few more changes to your code, but is safer in general), so you can even simplify your training loop further:

  import torch
  import torch.nn.functional as F
  from datasets import load_dataset
+ from accelerate import Accelerator

- device = 'cpu'
+ accelerator = Accelerator()

- model = torch.nn.Transformer().to(device)
+ model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())

  dataset = load_dataset('my_dataset')
  data = torch.utils.data.DataLoader(dataset, shuffle=True)

+ model, optimizer, data = accelerator.prepare(model, optimizer, data)

  model.train()
  for epoch in range(10):
      for source, targets in data:
-         source = source.to(device)
-         targets = targets.to(device)

          optimizer.zero_grad()

          output = model(source)
          loss = F.cross_entropy(output, targets)

-         loss.backward()
+         accelerator.backward(loss)

          optimizer.step()

Want to learn more? Check out the documentation or have look at our examples.

Launching script

๐Ÿค— Accelerate also provides an optional CLI tool that allows you to quickly configure and test your training environment before launching the scripts. No need to remember how to use torch.distributed.launch or to write a specific launcher for TPU training! On your machine(s) just run:

accelerate config

and answer the questions asked. This will generate a config file that will be used automatically to properly set the default options when doing

accelerate launch my_script.py --args_to_my_script

For instance, here is how you would run the GLUE example on the MRPC task (from the root of the repo):

accelerate launch examples/nlp_example.py

This CLI tool is optional, and you can still use python my_script.py or python -m torch.distributed.launch my_script.py at your convenance.

Launching multi-CPU run using MPI

๐Ÿค— Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on this page. You can use Intel MPI or MVAPICH as well. Once you have MPI setup on your cluster, just run:

mpirun -np 2 python examples/nlp_example.py

Launching training using DeepSpeed

๐Ÿค— Accelerate supports training on single/multiple GPUs using DeepSpeed. To use it, you don't need to change anything in your training code; you can set everything using just accelerate config. However, if you desire to tweak your DeepSpeed related args from your python script, we provide you the DeepSpeedPlugin.

from accelerate import Accelerator, DeepSpeedPlugin

# deepspeed needs to know your gradient accumulation steps before hand, so don't forget to pass it
# Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed
deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=2)
accelerator = Accelerator(mixed_precision='fp16', deepspeed_plugin=deepspeed_plugin)

# How to save your ๐Ÿค— Transformer?
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(save_dir, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model))

Note: DeepSpeed support is experimental for now. In case you get into some problem, please open an issue.

Launching your training from a notebook

๐Ÿค— Accelerate also provides a notebook_launcher function you can use in a notebook to launch a distributed training. This is especially useful for Colab or Kaggle notebooks with a TPU backend. Just define your training loop in a training_function then in your last cell, add:

from accelerate import notebook_launcher

notebook_launcher(training_function)

An example can be found in this notebook. Open In Colab

Why should I use ๐Ÿค— Accelerate?

You should use ๐Ÿค— Accelerate when you want to easily run your training scripts in a distributed environment without having to renounce full control over your training loop. This is not a high-level framework above PyTorch, just a thin wrapper so you don't have to learn a new library, In fact the whole API of ๐Ÿค— Accelerate is in one class, the Accelerator object.

Why shouldn't I use ๐Ÿค— Accelerate?

You shouldn't use ๐Ÿค— Accelerate if you don't want to write a training loop yourself. There are plenty of high-level libraries above PyTorch that will offer you that, ๐Ÿค— Accelerate is not one of them.

Frameworks using ๐Ÿค— Accelerate

If you like the simplicity of ๐Ÿค— Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of ๐Ÿค— Accelerate are listed below:

  • Animus is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within IExperiment.
  • Catalyst is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a Runner to connect all parts of the experiment: hardware backend, data transformations, model train, and inference logic.
  • fastai is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a Learner to handle the training, fine-tuning, and inference of deep learning algorithms.
  • InvokeAI is a creative engine for Stable Diffusion models, offering industry-leading WebUI, terminal usage support, and serves as the foundation for many commercial products.
  • Kornia is a differentiable library that allows classical computer vision to be integrated into deep learning models. Kornia provides a Trainer with the specific purpose to train and fine-tune the supported deep learning algorithms within the library.
  • Open Assistant is a chat-based assistant that understands tasks, can interact with their party systems, and retrieve information dynamically to do so.
  • pytorch-accelerated is a lightweight training library, with a streamlined feature set centred around a general-purpose Trainer, that places a huge emphasis on simplicity and transparency; enabling users to understand exactly what is going on under the hood, but without having to write and maintain the boilerplate themselves!
  • Stable Diffusion web UI is an open-source browser-based easy-to-use interface based on the Gradio library for Stable Diffusion.

Installation

This repository is tested on Python 3.6+ and PyTorch 1.4.0+

You should install ๐Ÿค— Accelerate in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.

First, create a virtual environment with the version of Python you're going to use and activate it.

Then, you will need to install PyTorch: refer to the official installation page regarding the specific install command for your platform. Then ๐Ÿค— Accelerate can be installed using pip as follows:

pip install accelerate

Supported integrations

  • CPU only
  • multi-CPU on one node (machine)
  • multi-CPU on several nodes (machines)
  • single GPU
  • multi-GPU on one node (machine)
  • multi-GPU on several nodes (machines)
  • TPU
  • FP16 with native AMP (apex on the roadmap)
  • DeepSpeed support (Experimental)
  • PyTorch Fully Sharded Data Parallel (FSDP) support (Experimental)
  • Megatron-LM support (Experimental)

Citing ๐Ÿค— Accelerate

If you use ๐Ÿค— Accelerate in your publication, please cite it by using the following BibTeX entry.

@Misc{accelerate,
  title =        {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
  author =       {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
  howpublished = {\url{https://github.com/huggingface/accelerate}},
  year =         {2022}
}

accelerate's People

Contributors

benjaminbossan avatar cccntu avatar chris-hughes10 avatar ddkalamk avatar dennisbappert avatar dhar174 avatar gladiator07 avatar johnnv1 avatar lewtun avatar loubnabnl avatar lysandrejik avatar mishig25 avatar muellerzr avatar pacman100 avatar patrickvonplaten avatar pcuenca avatar philschmid avatar ryanrussell avatar samuelstevens avatar scitator avatar sgugger avatar shi-on avatar shreyz-max avatar stas00 avatar sywangyi avatar thomasw21 avatar thomwolf avatar younesbelkada avatar zh-plus avatar zhiyuanchen avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.