Giter Site home page Giter Site logo

ecnerwala / icpc-book Goto Github PK

View Code? Open in Web Editor NEW
180.0 180.0 35.0 22.16 MB

Book Code for ICPC; Unmaintained, see https://github.com/kth-competitive-programming/kactl/ or https://github.com/ecnerwala/cp-book

License: MIT License

Makefile 0.36% Shell 0.05% TeX 8.48% C++ 69.40% Python 2.00% Java 0.50% C 19.13% Vim Script 0.07% Perl 0.02%

icpc-book's Introduction

Hi there ๐Ÿ‘‹

icpc-book's People

Contributors

ecnerwala avatar ksun48 avatar xyzhan avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

icpc-book's Issues

Faster FFT

Kactl only has slow recursive FFT. At least modify + use mine.

#pragma once

#include <utility>

template <int L_, typename num> struct fft {
	static constexpr int L = L_;
	static constexpr int N = (1 << L);
	using num_t = num;

	using arr = num[N];
	const num root;
	const num invRoot = num(1) / root;
	const num invN = num(1) / num(N);
	num roots[L+1];
	num invRoots[L+1];
	fft(num root_) : root(root_) {
		roots[0] = root;
		invRoots[0] = invRoot;
		for (int i = 1; i <= L; i++) {
			roots[i] = roots[i-1] * roots[i-1];
			invRoots[i] = invRoots[i-1] * invRoots[i-1];
		}
		//assert(roots[L] == 1);
		//assert(invRoots[L] == 1);
	}

	void bitReversal(arr a) {
		for (int i = 1, j = 0; i < N-1; i++) {
			for (int k = N / 2; k > (j ^= k); k /= 2);
			if (j < i) {
				std::swap(a[j], a[i]);
			}
		}
	}

	void operator () (arr a, bool inv = false) {
		bitReversal(a);
		for (int l = 1, p = 0; l < N; l <<= 1, p++) {
			num w = inv ? invRoots[L - p - 1] : roots[L - p - 1];
			for (int k = 0; k < N; k += (2 * l)) {
				num v = 1;
				for (int i = k; i < k + l; i++, v *= w) {
					num x = a[i];
					num y = v * a[i+l];
					a[i] = x + y;
					a[i+l] = x - y;
				}
			}
		}
		if (inv) {
			for (int i = 0; i < N; i++) {
				a[i] *= invN;
			}
		}
	}
};

Suffix Array

Let's document the arguments to string-sa-lcp.cpp. I think you're supposed to pass n+1 to da and n to calHeight?

FFT Cleanup + 1e9+7

See https://codeforces.com/contest/986/submission/42104740 (tourist FFT) or https://codeforces.com/gym/102114/submission/50583317 (1e9+7 + exp) or fft.cpp

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define fi first
#define se second
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod= 998244353;
ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head

const int md = 998244353;

inline void add(int &x, int y) {
  x += y;
  if (x >= md) {
    x -= md;
  }
}

inline void sub(int &x, int y) {
  x -= y;
  if (x < 0) {
    x += md;
  }
}

inline int mul(int x, int y) {
  return (long long) x * y % md;
}

inline int power(int x, int y) {
  int res = 1;
  for (; y; y >>= 1, x = mul(x, x)) {
    if (y & 1) {
      res = mul(res, x);
    }
  }
  return res;
}

inline int inv(int a) {
  a %= md;
  if (a < 0) {
    a += md;
  }
  int b = md, u = 0, v = 1;
  while (a) {
    int t = b / a;
    b -= t * a;
    swap(a, b);
    u -= t * v;
    swap(u, v);
  }
  if (u < 0) {
    u += md;
  }
  return u;
}

namespace ntt {
int base = 1, root = -1, max_base = -1;
vector<int> rev = {0, 1}, roots = {0, 1};

void init() {
  int temp = md - 1;
  max_base = 0;
  while (temp % 2 == 0) {
    temp >>= 1;
    ++max_base;
  }
  root = 2;
  while (true) {
    if (power(root, 1 << max_base) == 1 && power(root, 1 << max_base - 1) != 1) {
      break;
    }
    ++root;
  }
}

void ensure_base(int nbase) {
  if (max_base == -1) {
    init();
  }
  if (nbase <= base) {
    return;
  }
  assert(nbase <= max_base);
  rev.resize(1 << nbase);
  for (int i = 0; i < 1 << nbase; ++i) {
    rev[i] = rev[i >> 1] >> 1 | (i & 1) << nbase - 1;
  }
  roots.resize(1 << nbase);
  while (base < nbase) {
    int z = power(root, 1 << max_base - 1 - base);
    for (int i = 1 << base - 1; i < 1 << base; ++i) {
      roots[i << 1] = roots[i];
      roots[i << 1 | 1] = mul(roots[i], z);
    }
    ++base;
  }
}

void dft(vector<int> &a) {
  int n = a.size(), zeros = __builtin_ctz(n);
  ensure_base(zeros);
  int shift = base - zeros;
  for (int i = 0; i < n; ++i) {
    if (i < rev[i] >> shift) {
      swap(a[i], a[rev[i] >> shift]);
    }
  }
  for (int i = 1; i < n; i <<= 1) {
    for (int j = 0; j < n; j += i << 1) {
      for (int k = 0; k < i; ++k) {
        int x = a[j + k], y = mul(a[j + k + i], roots[i + k]);
        a[j + k] = (x + y) % md;
        a[j + k + i] = (x + md - y) % md;
      }
    }
  }
}

vector<int> multiply(vector<int> a, vector<int> b) {
  int need = a.size() + b.size() - 1, nbase = 0;
  while (1 << nbase < need) {
    ++nbase;
  }
  ensure_base(nbase);
  int sz = 1 << nbase;
  a.resize(sz);
  b.resize(sz);
  bool equal = a == b;
  dft(a);
  if (equal) {
    b = a;
  } else {
    dft(b);
  }
  int inv_sz = inv(sz);
  for (int i = 0; i < sz; ++i) {
    a[i] = mul(mul(a[i], b[i]), inv_sz);
  }
  reverse(a.begin() + 1, a.end());
  dft(a);
  a.resize(need);
  return a;
}

vector<int> inverse(vector<int> a) {
  int n = a.size(), m = n + 1 >> 1;
  if (n == 1) {
    return vector<int>(1, inv(a[0]));
  } else {
    vector<int> b = inverse(vector<int>(a.begin(), a.begin() + m));
    int need = n << 1, nbase = 0;
    while (1 << nbase < need) {
      ++nbase;
    }
    ensure_base(nbase);
    int sz = 1 << nbase;
    a.resize(sz);
    b.resize(sz);
    dft(a);
    dft(b);
    int inv_sz = inv(sz);
    for (int i = 0; i < sz; ++i) {
      a[i] = mul(mul(md + 2 - mul(a[i], b[i]), b[i]), inv_sz);
    }
    reverse(a.begin() + 1, a.end());
    dft(a);
    a.resize(n);
    return a;
  }
}
}

using ntt::multiply;
using ntt::inverse;

vector<int>& operator += (vector<int> &a, const vector<int> &b) {
  if (a.size() < b.size()) {
    a.resize(b.size());
  }
  for (int i = 0; i < b.size(); ++i) {
    add(a[i], b[i]);
  }
  return a;
}

vector<int> operator + (const vector<int> &a, const vector<int> &b) {
  vector<int> c = a;
  return c += b;
}

vector<int>& operator -= (vector<int> &a, const vector<int> &b) {
  if (a.size() < b.size()) {
    a.resize(b.size());
  }
  for (int i = 0; i < b.size(); ++i) {
    sub(a[i], b[i]);
  }
  return a;
}

vector<int> operator - (const vector<int> &a, const vector<int> &b) {
  vector<int> c = a;
  return c -= b;
}

vector<int>& operator *= (vector<int> &a, const vector<int> &b) {
  if (min(a.size(), b.size()) < 128) {
    vector<int> c = a;
    a.assign(a.size() + b.size() - 1, 0);
    for (int i = 0; i < c.size(); ++i) {
      for (int j = 0; j < b.size(); ++j) {
        add(a[i + j], mul(c[i], b[j]));
      }
    }
  } else {
    a = multiply(a, b);
  }
  return a;
}

vector<int> operator * (const vector<int> &a, const vector<int> &b) {
  vector<int> c = a;
  return c *= b;
}

vector<int>& operator /= (vector<int> &a, const vector<int> &b) {
  int n = a.size(), m = b.size();
  if (n < m) {
    a.clear();
  } else {
    vector<int> c = b;
    reverse(a.begin(), a.end());
    reverse(c.begin(), c.end());
    c.resize(n - m + 1);
    a *= inverse(c);
    a.erase(a.begin() + n - m + 1, a.end());
    reverse(a.begin(), a.end());
  }
  return a;
}

vector<int> operator / (const vector<int> &a, const vector<int> &b) {
  vector<int> c = a;
  return c /= b;
}

vector<int>& operator %= (vector<int> &a, const vector<int> &b) {
  int n = a.size(), m = b.size();
  if (n >= m) {
    vector<int> c = (a / b) * b;
    a.resize(m - 1);
    for (int i = 0; i < m - 1; ++i) {
      sub(a[i], c[i]);
    }
  }
  return a;
}

vector<int> operator % (const vector<int> &a, const vector<int> &b) {
  vector<int> c = a;
  return c %= b;
}

vector<int> derivative(const vector<int> &a) {
  int n = a.size();
  vector<int> b(n - 1);
  for (int i = 1; i < n; ++i) {
    b[i - 1] = mul(a[i], i);
  }
  return b;
}

vector<int> primitive(const vector<int> &a) {
  int n = a.size();
  vector<int> b(n + 1), invs(n + 1);
  for (int i = 1; i <= n; ++i) {
    invs[i] = i == 1 ? 1 : mul(md - md / i, invs[md % i]);
    b[i] = mul(a[i - 1], invs[i]);
  }
  return b;
}

vector<int> logarithm(const vector<int> &a) {
  vector<int> b = primitive(derivative(a) * inverse(a));
  b.resize(a.size());
  return b;
}

vector<int> exponent(const vector<int> &a) {
  vector<int> b(1, 1);
  while (b.size() < a.size()) {
    vector<int> c(a.begin(), a.begin() + min(a.size(), b.size() << 1));
    add(c[0], 1);
    vector<int> old_b = b;
    b.resize(b.size() << 1);
    c -= logarithm(b);
    c *= old_b;
    for (int i = b.size() >> 1; i < b.size(); ++i) {
      b[i] = c[i];
    }
  }
  b.resize(a.size());
  return b;
}

vector<int> power(const vector<int> &a, int m) {
  int n = a.size(), p = -1;
  vector<int> b(n);
  for (int i = 0; i < n; ++i) {
    if (a[i]) {
      p = i;
      break;
    }
  }
  if (p == -1) {
    b[0] = !m;
    return b;
  }
  if ((long long) m * p >= n) {
    return b;
  }
  int mu = power(a[p], m), di = inv(a[p]);
  vector<int> c(n - m * p);
  for (int i = 0; i < n - m * p; ++i) {
    c[i] = mul(a[i + p], di);
  }
  c = logarithm(c);
  for (int i = 0; i < n - m * p; ++i) {
    c[i] = mul(c[i], m);
  }
  c = exponent(c);
  for (int i = 0; i < n - m * p; ++i) {
    b[i + m * p] = mul(c[i], mu);
  }
  return b;
}

vector<int> sqrt(const vector<int> &a) {
  vector<int> b(1, 1);
  while (b.size() < a.size()) {
    vector<int> c(a.begin(), a.begin() + min(a.size(), b.size() << 1));
    vector<int> old_b = b;
    b.resize(b.size() << 1);
    c *= inverse(b);
    for (int i = b.size() >> 1; i < b.size(); ++i) {
      b[i] = mul(c[i], md + 1 >> 1);
    }
  }
  b.resize(a.size());
  return b;
}

vector<int> multiply_all(int l, int r, vector<vector<int>> &all) {
  if (l > r) {
    return vector<int>();
  } else if (l == r) {
    return all[l];
  } else {
    int y = l + r >> 1;
    return multiply_all(l, y, all) * multiply_all(y + 1, r, all);
  }
}

vector<int> evaluate(const vector<int> &f, const vector<int> &x) {
  int n = x.size();
  if (!n) {
    return vector<int>();
  }
  vector<vector<int>> up(n * 2);
  for (int i = 0; i < n; ++i) {
    up[i + n] = vector<int>{(md - x[i]) % md, 1};
  }
  for (int i = n - 1; i; --i) {
    up[i] = up[i << 1] * up[i << 1 | 1];
  }
  vector<vector<int>> down(n * 2);
  down[1] = f % up[1];
  for (int i = 2; i < n * 2; ++i) {
    down[i] = down[i >> 1] % up[i];
  }
  vector<int> y(n);
  for (int i = 0; i < n; ++i) {
    y[i] = down[i + n][0];
  }
  return y;
}

vector<int> interpolate(const vector<int> &x, const vector<int> &y) {
  int n = x.size();
  vector<vector<int>> up(n * 2);
  for (int i = 0; i < n; ++i) {
    up[i + n] = vector<int>{(md - x[i]) % md, 1};
  }
  for (int i = n - 1; i; --i) {
    up[i] = up[i << 1] * up[i << 1 | 1];
  }
  vector<int> a = evaluate(derivative(up[1]), x);
  for (int i = 0; i < n; ++i) {
    a[i] = mul(y[i], inv(a[i]));
  }
  vector<vector<int>> down(n * 2);
  for (int i = 0; i < n; ++i) {
    down[i + n] = vector<int>(1, a[i]);
  }
  for (int i = n - 1; i; --i) {
    down[i] = down[i << 1] * up[i << 1 | 1] + down[i << 1 | 1] * up[i << 1];
  }
  return down[1];
}

3D hull

Maybe we want faster 3d hull?

Bernoulli Numbers

We should probably get Bernoulli numbers in our book... I don't see it right now

PBDS Hash Map

We should get the pbds faster hashmap in our book.

Cayley's thm extensions

There are some surprising extensions of Cayley's theorem. If you have trees of size $$n_1, \ldots, n_k$$, then the number of completions into a single tree is $n_1n_2\ldots n_k n^{k-2}$.

Also, # of labelled trees with degree list $d$ is $(N-2)! / (d_1-1)!(d_2-1)!\ldots$

Java

It would be nice to have a little java information (IO, BigInteger, how to turn on asserts, etc.).

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.