Giter Site home page Giter Site logo

eng-fabiorfo / radimagenet Goto Github PK

View Code? Open in Web Editor NEW

This project forked from bmeii-ai/radimagenet

0.0 0.0 0.0 625.62 MB

RadImageNet, a pre-trained convolutional neural networks trained solely from medical imaging to be used as the basis of transfer learning for medical imaging applications.

License: MIT License

Python 84.25% Jupyter Notebook 15.75%

radimagenet's Introduction

RadImageNet

Welcome to the official repository for RadImageNet.

The RadImageNet database is an open-access medical imaging database. This study was designed to improve transfer learning performance on downstream medical imaging applications. The experiments were designed in four phases. The RadImageNet dataset are available by request at https://www.radimagenet.com/, and the dataset split csv can be found here https://drive.google.com/drive/folders/1FUir_Y_kbQZWih1TMVf9Sz8Pdk9NF2Ym?usp=sharing. The RadImageNet pretrained models are availble at https://drive.google.com/drive/folders/1Es7cK1hv7zNHJoUW0tI0e6nLFVYTqPqK?usp=sharing. We will release pretrained Swin Transformer weights later.

Note: if you don't receive a response to your inquiry (check your junk/spam folder first) you can directly email [email protected] or [email protected].

alt text

The RadImageNet database includes 1.35 million annotated CT, MRI, and ultrasound images of musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, and pulmonary pathology. The RadImageNet database contains medical images of 3 modalities, 11 anatomies, and 165 pathologic labels.

alt text

Top1 and Top5 Accuracy

Model Name Top1 Accuracy Top5 Accuracy
InceptionResNetV2 74.0% 94.3%
ResNet50 72.3% 94.1%
DenseNet121 73.1% 96.1%
InceptionV3 73.2% 92.7%

Citation

If you find RadImageNet dataset and/or models useful in your research, please cite:

@article{doi:10.1148/ryai.210315,
author = {Mei, Xueyan and Liu, Zelong and Robson, Philip M. and Marinelli, Brett and Huang, Mingqian and Doshi, Amish and Jacobi, Adam and Cao, Chendi and Link, Katherine E. and Yang, Thomas and Wang, Ying and Greenspan, Hayit and Deyer, Timothy and Fayad, Zahi A. and Yang, Yang},
title = {RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning},
journal = {Radiology: Artificial Intelligence},
volume = {0},
number = {ja},
pages = {e210315},
year = {0},
doi = {10.1148/ryai.210315},

URL = { 
        https://doi.org/10.1148/ryai.210315
    
},
eprint = { 
        https://doi.org/10.1148/ryai.210315
}
}

Pretained RadImageNet Models:

Our RadImageNet pretrained networks include ResNet50, DenseNet121, InceptionResNetV2, and InceptionV3. They are trained solely from RadImageNet medical images and can be used as the starting point on downstream applications using transfer learning. We evaluated RadImageNet pretrained models on 8 medical imaging applications and compared the results to ImageNet pretrained models by using publically available datasets, including thyroid nodule malignancy prediction on ultrasound (1), breast lesion classification on ultrasound (2), ACL and meniscus tear detection on MR (3); pneumonia detection on chest radiographs(4), SARS-CoV-2 detection and COVID-19 identification on chest CT (5,6); and hemorrhage detection on head CT (7). For each medical application, we simulated 24 scenarios to fine tune the models. The four CNN bottlenecks were performed with varied learning rates and different numbers of freezing layers. Unfreezing all layers was conducted with learning rates of 0.001 and 0.0001, while freezing all layers and unfreezing top 10 layers were trained with learning rates of 0.01 and 0.001. The average AUROC and standard deviation of these 24 settings were compared between RadImageNet and Imagenet pre-trained models.

Comparions on small datasets (5-fold cross validation) alt text

Comparions on large datasets alt text

The sample code for each application is listed upward.

Seven public medical applications datasets are available at:

Thyroid ultrasound

Breast ultrasound

ACL and meniscus tear detection

Pneumonia detection

SARS-CoV-2 detection

Intracranial hemorrhage detection

radimagenet's People

Contributors

chendicao avatar lzl199704 avatar xmei123 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.