Giter Site home page Giter Site logo

covid-19's Introduction

How contagious COVID-19 is?

Everything epidemiology can tell us about the new coronavirus.

One quantity scientists use to measure how a disease spreads through a population is the "basic reproduction number," otherwise known as R0 (pronounced "R naught," or, if you hate pirates, "arr not"). This number tells us how many people, on average, each infected person will in turn infect. While it doesn't tell us how deadly an epidemic is, R0 is a measure of how infectious a new disease is, and helps guide epidemic control strategies implemented by governments and health organizations.

If R0 is less than 1, the disease will typically die out: Each infected person has a low chance of passing the infection along to even one additional individual. An R0 larger than 1 means each sick person infects at least one other person on average, who then could infect others, until the disease spreads through the population. For instance, a typical seasonal flu strain has an R0 of around 1.2, which means for every five infected people, the disease will spread to six new people on average, who pass it along to others.

Screenshot

"Herd immunity" also depends on R0. The more people immune to a disease in a population, the fewer are available to be infected. If immunity reaches a critical level through vaccination or just naturally running out of new people to infect, the disease is starved out. Herd immunity is easier to achieve for lower R0 values because the disease doesn't spread as readily.

But it’s important to remember that R0 is a statistical estimate of how a disease spreads in a particular population if it’s left unchecked. SARS had a higher R0 values (between 2 and 5) than the seasonal flu, but never spread widely enough to become a worldwide epidemic. Flu, on the other hand, is always widespread despite having a relatively small basic reproduction number: the United States Centers for Disease Control (CDC) estimate between 3 and 11 percent of the US population gets sick with the flu every year.

That brings us back to the coronavirus now known as COVID-19. Because the disease is fairly new to medicine, researchers are still tabulating the data required to calculate R0 more or less in real time. As of February 19, 2020, estimates placed R0 above 1.4 but below 4, well within the range for other coronaviruses like SARS. (See this excellent Lifehacker article for more about the issues surrounding COVID-19 and R0.)

Deadly Serious

Another important number for understanding diseases is the "case fatality rate" or CFR: What percentage of people who have a disease die from it? On one extreme, we have rabies, which has a 99 percent fatality rate if untreated. On the other is the common cold, which has a relatively high R0 but is almost never fatal (the exceptions being mostly immunocompromised people). The seasonal flu has a low CFR, but enough people get it every year that the CDC estimates as many as 30,000 Americans may have died from it between October 2019 and February 2020.

Similarly, measles is extremely infectious, but rarely fatal (though its spooky effect on the immune system can make victims susceptible to other life-threatening diseases). Smallpox was less infectious with an R0 of 5 to 7, but its CFR of roughly 30 percent made it devastating. Measles, though less serious, has such a high infection rate that it needs a much larger vaccinated population for proper herd immunity; smallpox vaccines achieved herd immunity at much lower rates, and wiped the illness out entirely by 1980.

The CFR for an emerging disease like COVID-19 is remarkably hard to estimate accurately, simply because all the numbers involved are relatively small. A preliminary calculation from February 8, 2020 estimates CFR of about 1.4 percent—meaning out of 1,000 infected people, around 14 will die—but that’s based only on cases from outside China, since the data from that nation’s government has been unreliable. The numbers will likely shift over the next weeks and months, but the CFR for COVID-19 seems to be lower than for SARS and MERS. However, the high concentration of cases in one region of China is putting a huge stress on the healthcare infrastructure, which is a concern for any major epidemic. Demo: https://fotisz.github.io/COVID-19/

covid-19's People

Contributors

fotisz avatar cagataycali avatar omerbulbul avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.