Giter Site home page Giter Site logo

bispectral-networks's Introduction

Bispectral Neural Networks

This repository is the official implementation of Bispectral Neural Networks.

Installation

To install the requirements and package, run:

pip install -r requirements.txt
python setup.py install

Datasets

To download the datasets, run:

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=10w3fKdO0eWEe2KxZxpf8YFndXdCNNR8b' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=10w3fKdO0eWEe2KxZxpf8YFndXdCNNR8b" -O datasets.zip 
rm -rf /tmp/cookies.txt
unzip datasets.zip
rm -r datasets.zip

If your machine doesn't have wget, follow these steps:

  1. Download the zip file here.
  2. Place the file in the top node of this directory, i.e. in bispectral-networks/.
  3. Run:
    unzip datasets.zip
    rm -r datasets.zip
    

Training

To train the models in the paper, run the following commands.

python train.py --config rotation_experiment
python train.py --config translation_experiment

To run on GPU, add the following argument, with the integer specifying the device number, i.e.:

--device 0

The full set of hyperparameters and training configurations are specified in the config files in the configs/ folder.

To view learning curves in Tensorboard, run:

tensorboard --logdir logs/

Pre-trained Models

The pre-trained models are included in the repo, in the following locations:

logs/rotation_model/
logs/translation_model/

Results and Figures

All results and figures from the paper are generated in the Jupyter notebooks located at:

notebooks/rotation_experiment_analysis.ipynb
notebooks/translation_experiment_analysis.ipynb

License

This repository is licensed under the MIT License.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.