Giter Site home page Giter Site logo

mlplus's Introduction

#Machine Learning toolbox

##overview The mlplus source code repository is used as machine learning library. we provide a simple and fast basic machine learning algorithms, such as

  1. navie bayes classifier (http://en.wikipedia.org/wiki/Naive_Bayes_classifier)
  2. standard decision tree (c4.5 etc.)
  3. The k-means algorithm
  4. EM algorithm
  5. The Apriori algorithm
  6. adboost (http://en.wikipedia.org/wiki/AdaBoost)
  7. gbdt(gradient boosting decision tree(http://en.wikipedia.org/wiki/Gradient_boosting),
  8. svm

e.t.c

list of the machine learning

###Classification

#####1. C4.5

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.

#####2. CART

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.

####3. K Nearest Neighbours (kNN)

Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest Neighbor Classification. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616. DOI= http://dx.doi.org/10.1109/34.506411

####4. Naive Bayes

Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All? Internat. Statist. Rev. 69, 385-398.

###Statistical Learning

####5. SVM

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc.

####6. EM

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. J. Wiley, New York.

###Association Analysis

####7. Apriori

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In Proc. of the 20th Int'l Conference on Very Large Databases (VLDB '94), Santiago, Chile, September 1994. http://citeseer.comp.nus.edu.sg/agrawal94fast.html

####8. FP-Tree

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In Proceedings of the 2000 ACM SIGMOD international Conference on Management of Data (Dallas, Texas, United States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12. DOI= http://doi.acm.org/10.1145/342009.335372

###Link Mining

####9. PageRank

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the Seventh international Conference on World Wide Web (WWW-7) (Brisbane, Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 107-117. DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X

####10. HITS

Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, California, United States, January 25 - 27, 1998). Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, 668-677.

###Clustering

####11. K-Means

MacQueen, J. B., Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, 1967, pp. 281-297.

####12. BIRCH

Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient data clustering method for very large databases. In Proceedings of the 1996 ACM SIGMOD international Conference on Management of Data (Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed. SIGMOD '96. ACM Press, New York, NY, 103-114. DOI= http://doi.acm.org/10.1145/233269.233324

###Bagging and Boosting

####13. AdaBoost

Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139. DOI= http://dx.doi.org/10.1006/jcss.1997.1504

###Sequential Patterns

####14. GSP

Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns: Generalizations and Performance Improvements. In Proceedings of the 5th international Conference on Extending Database Technology: Advances in Database Technology (March 25 - 29, 1996). P. M. Apers, M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer Science, vol. 1057. Springer-Verlag, London, 3-17.

####15. PrefixSpan

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In Proceedings of the 17th international Conference on Data Engineering (April 02 - 06, 2001). ICDE '01. IEEE Computer Society, Washington, DC.

###Integrated Mining

####16. CBA

Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and association rule mining. KDD-98, 1998, pp. 80-86. http://citeseer.comp.nus.edu.sg/liu98integrating.html

###Rough Sets

####17. Finding reduct

Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992

###Graph Mining

####18. gSpan

Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer Society, Washington, DC.

  • to get source:

  • to run it:

  • to get command line help run:

  • to install

  • in tools dir

mlplus's People

Contributors

wxwidget avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.