Giter Site home page Giter Site logo

jamestiotio / ns-3-dev-git Goto Github PK

View Code? Open in Web Editor NEW

This project forked from nsnam/ns-3-dev-git

0.0 1.0 0.0 198.13 MB

GitHub read-only mirror of ns-3-dev repository, will be kept in sync with main GitLab.com repository. Please DO NOT file pull requests here; instead, file issues and merge requests at https://gitlab.com/nsnam/ns-3-dev/

Home Page: https://www.nsnam.org/

License: GNU General Public License v2.0

Shell 0.06% C++ 94.82% Python 2.55% Perl 0.01% C 1.30% MATLAB 0.19% Gnuplot 0.03% Makefile 0.12% CMake 0.85% Click 0.07%

ns-3-dev-git's Introduction

The Network Simulator, Version 3

codecov Gitlab CI Github CI

Table of Contents

  1. An overview
  2. Building ns-3
  3. Running ns-3
  4. Getting access to the ns-3 documentation
  5. Working with the development version of ns-3

NOTE: Much more substantial information about ns-3 can be found at https://www.nsnam.org

An Open Source project

ns-3 is a free open source project aiming to build a discrete-event network simulator targeted for simulation research and education. This is a collaborative project; we hope that the missing pieces of the models we have not yet implemented will be contributed by the community in an open collaboration process.

The process of contributing to the ns-3 project varies with the people involved, the amount of time they can invest and the type of model they want to work on, but the current process that the project tries to follow is described here: https://www.nsnam.org/developers/contributing-code/

This README excerpts some details from a more extensive tutorial that is maintained at: https://www.nsnam.org/documentation/latest/

Building ns-3

The code for the framework and the default models provided by ns-3 is built as a set of libraries. User simulations are expected to be written as simple programs that make use of these ns-3 libraries.

To build the set of default libraries and the example programs included in this package, you need to use the tool 'ns3'. Detailed information on how to use ns3 is included in the file doc/build.txt

However, the real quick and dirty way to get started is to type the command

./ns3 configure --enable-examples

followed by

./ns3

in the directory which contains this README file. The files built will be copied in the build/ directory.

The current codebase is expected to build and run on the set of platforms listed in the release notes file.

Other platforms may or may not work: we welcome patches to improve the portability of the code to these other platforms.

Running ns-3

On recent Linux systems, once you have built ns-3 (with examples enabled), it should be easy to run the sample programs with the following command, such as:

./ns3 run simple-global-routing

That program should generate a simple-global-routing.tr text trace file and a set of simple-global-routing-xx-xx.pcap binary pcap trace files, which can be read by tcpdump -tt -r filename.pcap The program source can be found in the examples/routing directory.

Running ns-3 from python

If you do not plan to modify ns-3 upstream modules, you can get a pre-built version of the ns-3 python bindings.

pip install --user ns3

If you do not have pip, check their documents on how to install it.

After installing the ns3 package, you can then create your simulation python script. Below is a trivial demo script to get you started.

from ns import ns

ns.LogComponentEnable("Simulator", ns.LOG_LEVEL_ALL)

ns.Simulator.Stop(ns.Seconds(10))
ns.Simulator.Run()
ns.Simulator.Destroy()

The simulation will take a while to start, while the bindings are loaded. The script above will print the logging messages for the called commands.

Use help(ns) to check the prototypes for all functions defined in the ns3 namespace. To get more useful results, query specific classes of interest and their functions e.g. help(ns.Simulator).

Smart pointers Ptr<> can be differentiated from objects by checking if __deref__ is listed in dir(variable). To dereference the pointer, use variable.__deref__().

Most ns-3 simulations are written in C++ and the documentation is oriented towards C++ users. The ns-3 tutorial programs (first.cc, second.cc, etc.) have Python equivalents, if you are looking for some initial guidance on how to use the Python API. The Python API may not be as full-featured as the C++ API, and an API guide for what C++ APIs are supported or not from Python do not currently exist. The project is looking for additional Python maintainers to improve the support for future Python users.

Getting access to the ns-3 documentation

Once you have verified that your build of ns-3 works by running the simple-point-to-point example as outlined in 3) above, it is quite likely that you will want to get started on reading some ns-3 documentation.

All of that documentation should always be available from the ns-3 website: https://www.nsnam.org/documentation/.

This documentation includes:

Working with the development version of ns-3

If you want to download and use the development version of ns-3, you need to use the tool git. A quick and dirty cheat sheet is included in the manual, but reading through the git tutorials found in the Internet is usually a good idea if you are not familiar with it.

If you have successfully installed git, you can get a copy of the development version with the following command:

git clone https://gitlab.com/nsnam/ns-3-dev.git

However, we recommend to follow the Gitlab guidelines for starters, that includes creating a Gitlab account, forking the ns-3-dev project under the new account's name, and then cloning the forked repository. You can find more information in the manual.

ns-3-dev-git's People

Contributors

a-andre avatar ameyanrd avatar bhaskar792 avatar bpswenson avatar cawka avatar dnlove avatar edalm avatar gabearrobo avatar gabrielcarvfer avatar lalithsuresh avatar linlinjava avatar lparcerisa avatar mkbanchi avatar mohittahiliani avatar mrichart avatar natale-p avatar nikkipui avatar pasquimp avatar rajb245 avatar rediet-orange avatar sderonne avatar smithsg84 avatar stavallo avatar thehajime avatar tom5760 avatar tomhenderson avatar tommypec avatar vedranmiletic avatar vivek-anand-jain avatar zorazeali avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.