Giter Site home page Giter Site logo

jcabraham / pyunicorn Goto Github PK

View Code? Open in Web Editor NEW

This project forked from pik-copan/pyunicorn

0.0 0.0 0.0 1.21 MB

Unified Complex Network and Recurrence Analysis Toolbox

Home Page: http://pik-potsdam.de/~donges/pyunicorn/

License: Other

Python 96.53% C 3.11% Shell 0.36%

pyunicorn's Introduction

pyunicorn

https://travis-ci.org/pik-copan/pyunicorn.svg?branch=master

pyunicorn (Unified Complex Network and RecurreNce analysis toolbox) is a fully object-oriented Python package for the advanced analysis and modeling of complex networks. Above the standard measures of complex network theory such as degree, betweenness and clustering coefficient it provides some uncommon but interesting statistics like Newman's random walk betweenness. pyunicorn features novel node-weighted (node splitting invariant) network statistics as well as measures designed for analyzing networks of interacting/interdependent networks.

Moreover, pyunicorn allows to easily construct networks from uni- and multivariate time series and event data (functional (climate) networks and recurrence networks). This involves linear and nonlinear measures of time series analysis for constructing functional networks from multivariate data (e.g. Pearson correlation, mutual information, event synchronization and event coincidence analysis). pyunicorn also features modern techniques of nonlinear analysis of single and pairs of time series such as recurrence quantification analysis (RQA), recurrence network analysis and visibility graphs.

Reference

Please acknowledge and cite the use of this software and its authors when results are used in publications or published elsewhere. You can use the following reference:

J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), doi:10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

Funding

The development of pyunicorn has been supported by various funding sources, notably the German Federal Ministry for Education and Research (projects GOTHAM and CoSy-CC2), the Leibniz Association (projects ECONS and DominoES), the German National Academic Foundation, and the Stordalen Foundation via the Planetary Boundary Research Network (PB.net) among others.

License

pyunicorn is BSD-licensed (3 clause).

Code

Stable releases, Development version

Changelog, Contributions

Documentation

For extensive HTML documentation, jump right to the pyunicorn homepage. Recent PDF versions are also available.

On a local development version, HTML and PDF documentation can be generated using Sphinx:

$> pip install --user -e .
$> cd docs; make clean html latexpdf

Dependencies

pyunicorn is written in Python 3.7. The software is quite flexible, we have it running on Linux and MacOSX machines, the institute's IBM iDataPlex cluster and even on Windows. It relies on the following open source or freely available packages which have to be installed on your machine.

Required:
Optional (used only in certain classes and methods):

Numpy, Scipy, Matplotlib, igraph and other packages should be available via a package management system on Linux or MacOSX. All packages can be downloaded, compiled and installed following the instructions on their homepages.

An easy way to go may be a Python distribution like Anaconda that already includes many libraries.

Installation

Stable release

Via the Python Package Index:

$> pip install pyunicorn
Development version

For a simple system-wide installation:

$> pip install -r requirements.txt .

Depending on your system, you may need root privileges. On UNIX-based operating systems (Linux, Mac OS X etc.) this is achieved with sudo.

For development, especially if you want to test pyunicorn from within the source directory:

$> pip install -r requirements.txt --user -e .

Test suite

Before committing changes to the code base, please make sure that all tests pass. The test suite is managed by tox and configured to use system-wide packages when available. Thus to avoid frequent waiting, we recommend you to install the current versions of the following packages:

$> pip install networkx matplotlib basemap Sphinx
$> pip install tox pylint pytest pytest-xdist pytest-flake8

The test suite can be run from anywhere in the project tree by issuing:

$> tox

To expose the defined test environments and target them independently:

$> tox -l
$> tox -e units,style

To test individual files:

$> py.test                   tests/test_core/TestNetwork.py  # unit tests
$> py.test --doctest-modules pyunicorn/core/network.py       # doctests
$> py.test --flake8          pyunicorn/core/network.py       # style
$> pylint                    pyunicorn/core/network.py       # code analysis

Mailing list

Not implemented yet.

pyunicorn's People

Contributors

aodenweller avatar etzinis avatar harmening avatar jdonges avatar jkroenke avatar mjziebarth avatar ntfrgl avatar wbarfuss avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.