Giter Site home page Giter Site logo

controls_challenge's Introduction

Comma Controls Challenge!

Car

Machine learning models can drive cars, paint beautiful pictures and write passable rap. But they famously suck at doing low level controls. Your goal is to write a good controller. This repo contains a model that simulates the lateral movement of a car, given steering commands. The goal is to drive this "car" well for a given desired trajectory.

Geting Started

We'll be using a synthetic dataset based on the comma-steering-control dataset for this challenge. These are actual routes with actual car and road states.

# download necessary dataset (~0.6G)
bash ./download_dataset.sh

# Test this works
python tinyphysics.py --model_path ./models/tinyphysics.onnx --data_path ./data/00000.csv --debug --controller simple


# Batch Metrics on lots of routes
python tinyphysics.py --model_path ./models/tinyphysics.onnx --data_path ./data --num_segs 100 --controller simple

# Generate a report comparing two controllers
python eval.py --model_path ./models/tinyphysics.onnx --data_path ./data --num_segs 100 --test_controller simple --baseline_controller open

There's also a notebook at experiment.ipynb, to explore.

TinyPhysics

This is a "simulated car" that has been trained to mimic a very simple physics model (bicycle model) based simulator, given realistic driving noise. It is an autoregressive model similar to ML Controls Sim in architecture. It's inputs are the car velocity (v_ego), forward acceleration (a_ego), lateral acceleration due to road roll (road_lataccel), current car lateral acceleration (current_lataccel) and a steer input (steer_action) and predicts the resultant lateral acceleration fo the car.

Controllers

Your controller should implement an update function that returns the steer_action. This controller is then run in-loop, in the simulator to autoregressively predict the car's response.

Evaluation

Each rollout will result in 2 costs:

  • lataccel_cost: $\dfrac{\Sigma(actual_lat_accel - target_lat_accel)^2}{steps} * 100$

  • jerk_cost: $\dfrac{\Sigma((actual_lat_accel_{t} - actual_lat_accel_{t-1}) / \Delta t)^2}{steps - 1} * 100$

It is important to minimize both costs. total_cost: $(lataccel_cost *5) + jerk_cost$

Submission

Run the following command, and send us a link to your fork of this repo, and the report.html this script generates.

python eval.py --model_path ./models/tinyphysics.onnx --data_path ./data --num_segs 5000 --test_controller <insert your controller name> --baseline_controller simple

controls_challenge's People

Contributors

nuwandavek avatar k78ma avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.