Giter Site home page Giter Site logo

kalleknast / rntn Goto Github PK

View Code? Open in Web Editor NEW
13.0 4.0 7.0 205 KB

An implementation of the recursive neural tensor network described by Socher et al (2013) in "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"

License: GNU General Public License v2.0

TeX 9.96% Python 90.04%

rntn's Introduction

RNTN

The Recursive Neural Tensor Network (RNTN) was state of the art for sentiment analysis in 2013.

This is an old (from 2015, before TensorFlow and Torch) GPU-implementation of RNTN described by Socher et al (2013) in Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank.

The model is trained using the Stanford Sentiment Treebank. Download extract extract train.txt and vocabulary.txt to ./data/. RNTN.py loads and trains the model.

Installation

The only dependencies are PyCUDA and NumPy.

Gradient derivations

Notation

  • $d$ - Length of word vector
  • $n$ - Node/layer
  • $x$ - Activation/output of neuron $(x \in \mathbb{R}^{d}$; $\tanh z)$
  • $z$ - Input to neuron $(z \in \mathbb{R}^{d}$; $z = Wx)$
  • $t$ - Target vector $(t \in \mathbb{R}^5$; 0-1 coded)
  • $y$ - Prediction $(y \in \mathbb{R}^5$; output of softmax layer - $softmax(z))$
  • $W_s$ - Classification matrix $(W_s \in \mathbb{R}^{5 \times d})$
  • $W$ - Weight matrix $(W \in \mathbb{R}^{d \times 2d})$
  • $V$ - Weight tensor $(V^{1:d} \in \mathbb{R}^{2d \times 2d \times d} )$
  • $L$ - Word embedding matrix $(L \in \mathbb{R}^{d \times |V|}$, $|V|$ is the size of the vocabulary)
  • $\theta$ - All weight parameters $(\theta = (W_s, W, V, L))$
  • $E$ - The cost as a function of $\theta$
  • $\delta_l$ - Error going to the left child node $(\delta_r$ error to the right child node)

Softmax

$$y_{i} = \frac{e^{z_i}}{\sum\limits_{j}e^{z_j}}$$

$$\frac{\partial y_i}{\partial z_j} = y_{i}(\delta_{ij} - y_{j})$$

$\delta_{ij}$ is the Kronecker's delta:

$$ \delta_{ij} = \begin{cases} 0 &\text{if } i \neq j, \\ 1 &\text{if } i=j. \end{cases} $$

Cost function $E$

$$ E(\theta) = - \sum\limits_{i}\sum\limits_{j}{t_{j}^{i} \log{y_{j}^{i}} + \lambda||\theta||^2} $$ $$ \frac{\partial E}{\partial y_j} = \frac{t_j}{y_j} $$

Activation function

$$ x_i = \tanh{z_i} $$ $$ \frac{\partial x_i}{\partial z_i} = 1 - \tanh^2{z_i} $$

Derivative of $E$ w.r.t. the sentiment classification matrix $W_s$

$$ \frac{\partial E}{\partial W_s} = \sum\limits_{k}\frac{\partial E}{\partial y_k}{\frac{\partial y_k}{\partial z^{s}}}{\frac{\partial z^{s}}{\partial W_{s}}} $$

Derivative of the cost function:

$$ \frac{\partial E}{\partial y} = \frac{t}{y} $$

Derivative of the $softmax$ function:

$$ \frac{\partial y_k}{\partial z^{s}{i}} = y{i}(\delta_{ik} - y_{k}) $$

Derivative of the input:

$$ \frac{\partial z^{s}}{\partial W_s} = x $$

Combined:

$$ \begin{split} \frac{\partial E}{\partial W_s} = \sum\limits_{k}\frac{t_k}{y_k}y_{k}(\delta_{ik} - y_{i})x_j \\ = x_j \sum\limits_{k}{t_k (\delta_{ik}-y_i)} \\ = x_j(y_i - t_i) \end{split} $$

Derivative of $E$ w.r.t. the weight matrix $W$

For one training sentence:

$$ \frac{\partial E}{\partial W} = \sum\limits_{k}\frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial z_{s}} \frac{\partial z_{s}}{\partial x} \frac{\partial x}{\partial z} \frac{\partial z}{\partial W} $$

Derivative of input to $node_n$ w.r.t. activation of $node_{n-1}$:

$$ \frac{\partial z}{\partial x} = W $$

Derivative of a node's activation w.r.t. its input:

$$ \begin{split} \frac{\partial x}{\partial z} = 1 - \tanh^2z \\ f'(x) = 1 - x^2 \\ f' \bigg( \bigg[ \begin{array}{c} x^l \ x^r \end{array} \bigg] \bigg) = 1 - \bigg[ \begin{array}{c} x^l \ x^r \end{array} \bigg] \otimes \bigg[ \begin{array}{c} x^l \ x^r \end{array} \bigg] \end{split} $$

Derivative of a node's input w.r.t. its weight matrix $W$:

$$ \frac{\partial z}{\partial W} = x $$

Combined:

$$ \begin{split} \delta^s = W_s{^T}(y - t) \otimes f'(x_n) \\ \frac{\partial E}{\partial W} = W^T \delta^s \otimes f' \bigg( \bigg[ \begin{array}{c} x_{n-1}^l \ x_{n-1}^r \end{array} \bigg] \bigg) \bigg[ \begin{array}{c} x_{n-1}^l \ x^{r}{_{n-1}} \end{array} \bigg]^T\\ \end{split} $$

Derivative of $E$ w.r.t. the slice $k$ of the tensor layer $V^{[k]}$

Top node $(node_n)$:

$$ \begin{split} \delta^s = W_s{^T}(y - t) \otimes (1 - x{n}^2) \ \frac{\partial E_n}{\partial V^{[k]}} = \delta^s{k} \bigg[ \begin{array}{c} x^l{{n-1}} \ x^r{{n-1}} \end{array} \bigg] \bigg[ \begin{array}{c} x_{n-1}^l \ x^{r}{_{n-1}} \end{array} \bigg]^T \ \end{split} $$

Left child node $(node_{n-1})$:

$$ \begin{split} \delta_{n} = \delta^{s,n} \ \delta^{n-1}{k} = \big( W^T \delta^n + S \big) \otimes f' \bigg( \bigg[ \begin{array}{c} x^l{n-1}\ x^r_{n-1} \end{array} \bigg] \bigg) \ S = \sum\limits_{k = 1}^d \delta^n \bigg( V^{[k]} + \big(V^{[k]})^T \bigg) \bigg[ \begin{array}{c} x^l_{n-1}\ x^r_{n-1} \end{array} \bigg] \ \delta^{n-1}l = \delta_l^{s,n-1} + \delta^{n-1}[1:d] \ \frac{\partial E{n-1}}{\partial V^{[k]}} = \frac{\partial E_n}{\partial V^{[k]}} + \delta^{n-1}l \bigg[ \begin{array}{c} x{n-2}^l \ x^{r}{_{n-2}} \end{array} \bigg]^T \end{split} $$

Reference: R. Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D. Manning, A.Y. Ng and C. Potts. 2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In EMNLP.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.