Giter Site home page Giter Site logo

lxalln / azure-function-autofac-dependency-injection Goto Github PK

View Code? Open in Web Editor NEW

This project forked from introtocomputerscience/azure-function-autofac-dependency-injection

0.0 0.0 0.0 115 KB

An Autofac based implementation of Dependency Injection based on Boris Wilhelms Azure Function Dependency Injection Project

License: MIT License

C# 100.00%

azure-function-autofac-dependency-injection's Introduction

Autofac Dependency Injection in Azure Functions

An Autofac based implementation of Dependency Injection based on Boris Wilhelm's azure-function-dependency-injection and Scott Holden's WebJobs.ContextResolver available on NuGet as AzureFunctions.Autofac

Build status

Usage

In order to implement the dependency injection you have to create a class to configure DependencyInjection and add an attribute on your function class.

Configuration

The configuration class is used to setup dependency injestion. Within the constructor of the class DependencyInjection.Initialize must be invoked. Registrations are then according to standard Autofac procedures.

In both .NET Framework and .NET Core a required functionName parameter is automatically injected for you but you must specify it as a constructor parameter. You can also use the optional ILoggerFactory parameter, to register it into the container, and therefore allow Autofac to inject ILogger<> into your services.

In .NET Core you have another optional baseDirectory parameter that can be used for loading external app configs. If you wish to use this functionality then you must specify this as a constructor parameter and it will be injected for you.

Functions V1 Example (.NET Framework)

    public class DIConfig
    {
        public DIConfig(string functionName)
        {
            DependencyInjection.Initialize(builder =>
            {
                //Implicity registration
                builder.RegisterType<Sample>().As<ISample>();
                //Explicit registration
                builder.Register<Example>(c => new Example(c.Resolve<ISample>())).As<IExample>();
                //Registration by autofac module
                builder.RegisterModule(new TestModule());
                //Named Instances are supported
                builder.RegisterType<Thing1>().Named<IThing>("OptionA");
                builder.RegisterType<Thing2>().Named<IThing>("OptionB");
            }, functionName);
        }
    }

Functions V2 Example (.NET Core)

    public class DIConfig
    {
        public DIConfig(string functionName, string baseDirectory, ILoggerFactory factory)
        {
            DependencyInjection.Initialize(builder =>
            {
                //Implicity registration
                builder.RegisterType<Sample>().As<ISample>();
                //Explicit registration
                builder.Register<Example>(c => new Example(c.Resolve<ISample>())).As<IExample>();
                //Registration by autofac module
                builder.RegisterModule(new TestModule());
                //Named Instances are supported
                builder.RegisterType<Thing1>().Named<IThing>("OptionA");
                builder.RegisterType<Thing2>().Named<IThing>("OptionB");
                // Configure Autofac to provide ILogger<> into constructors
                builder.RegisterLoggerFactory(factory);
            }, functionName);
        }
    }

Function Attribute and Inject Attribute

Once you have created your config class you need to annotate your function class indicating which config to use and annotate any parameters that are being injected. Note: All injected parameters must be registered with the autofac container in your resolver in order for this to work.

    [DependencyInjectionConfig(typeof(DIConfig))]
    public class GreeterFunction
    {
        [FunctionName("GreeterFunction")]
        public static HttpResponseMessage Run([HttpTrigger(AuthorizationLevel.Function, "get", Route = null)]HttpRequestMessage request, 
                                              ILogger log, 
                                              [Inject]IGreeter greeter, 
                                              [Inject]IGoodbyer goodbye)
        {
            log.LogInformation("C# HTTP trigger function processed a request.");
            return request.CreateResponse(HttpStatusCode.OK, $"{greeter.Greet()} {goodbye.Goodbye()}");
        }
    }

Logging with ILoggerFactory

With Azure Functions v2 it is now possible to provide an optional ILoggerFactory when setting up the Dependency Injection Config.

You will need to add a using statement in the Dependency Injection Config for AzureFunctions.Autofac.Shared.Extensions and add the following line in your Initialize function:

builder.RegisterLoggerFactory(factory);

It will now be possible for Autofac to inject into your classes an ILogger<> that can be used to output to the console or configured location.

An example of this is in the Microsoft Docs as well as in this repo in the LogWriter

Note that you must also update the host.json file to contain a Logging Configuration. See the Microsoft Docs for more details.

Using Named Dependencies

Support has been added to use named dependencies. Simple add a name parameter to the Inject attribute to specify which instance to use.

    [DependencyInjectionConfig(typeof(DIConfig))]
    public class GreeterFunction
    {
        [FunctionName("GreeterFunction")]
        public static HttpResponseMessage Run([HttpTrigger(AuthorizationLevel.Function, "get", Route = null)]HttpRequestMessage request, 
                                              ILogger log, 
                                              [Inject]IGreeter greeter, 
                                              [Inject("Main")]IGoodbyer goodbye, 
                                              [Inject("Secondary")]IGoodbyer alternateGoodbye)
        {
            log.LogInformation("C# HTTP trigger function processed a request.");
            return request.CreateResponse(HttpStatusCode.OK, $"{greeter.Greet()} {goodbye.Goodbye()} or {alternateGoodbye.Goodbye()}");
        }
    }

Multiple Dependency Injection Configurations

In some cases you may wish to have different dependency injection configs for different classes. This is supported by simply annotating the other class with a different dependency injection config.

    [DependencyInjectionConfig(typeof(DIConfig))]
    public class GreeterFunction
    {
        [FunctionName("GreeterFunction")]
        public static HttpResponseMessage Run([HttpTrigger(AuthorizationLevel.Function, "get", Route = null)]HttpRequestMessage request, 
                                              ILogger log, 
                                              [Inject]IGreeter greeter, 
                                              [Inject]IGoodbyer goodbye)
        {
            log.LogInformation("C# HTTP trigger function processed a request.");
            return request.CreateResponse(HttpStatusCode.OK, $"{greeter.Greet()} {goodbye.Goodbye()}");
        }
    }

    [DependencyInjectionConfig(typeof(SecondaryConfig))]
    public class SecondaryGreeterFunction
    {
        [FunctionName("SecondaryGreeterFunction")]
        public static HttpResponseMessage Run([HttpTrigger(AuthorizationLevel.Function, "get", Route = null)]HttpRequestMessage request, 
                                              ILogger log, 
                                              [Inject]IGreeter greeter, 
                                              [Inject]IGoodbyer goodbye)
        {
            log.LogInformation("C# HTTP trigger function processed a request.");
            return request.CreateResponse(HttpStatusCode.OK, $"{greeter.Greet()} {goodbye.Goodbye()}");
        }
    }

Verifying dependency injection configuration

Dependency injection is a great tool for creating unit tests. But with manual configuration of the dependency injection, there is a risk of mis-configuration that will not show up in unit tests. For this purpose, there is the DependencyInjection.VerifyConfiguration method.

It is not recommended to call VerifyConfiguration unless done so in a test-scenario.

VerifyConfiguration verifies the following rules:

  1. That an InjectAttribute is preceeded by a DependencyInjectionConfigAttribute.
  2. That the configuration can be instantiated.
  3. That all injected dependencies in the given type can be resolved with the defined configuration.
  4. Optionally that no redundant configurations exist, i.e. a DependencyInjectionConfigAttribute with no corresponding InjectAttribute.

Simple example of verification

Below is a very simple example of verifying the dependency injection configuration for a specific class:

    DependencyInjection.VerifyConfiguration(typeof(MyCustomClassThatUsesDependencyInjection));

Ignoring redundant configurations

If you don't want to verify rule 4, pass in false as the second parameter to VerifyConfiguration:

    DependencyInjection.VerifyConfiguration(typeof(MyCustomClassThatUsesDependencyInjection), false);

Example unit test to verify an entire project/assembly

For instance, you can use it in a unit test to verify that all classes in your project has dependency injection set up correctly:

    [TestMethod]
    public void TestDependencyInjectionConfigurationInAssembly() {
        var assembly = typeof(SomeClassInYouProject).Assembly;
        var types = assembly.GetTypes();
        foreach (var type in types) {
            DependencyInjection.VerifyConfiguration(type);
        }
    }

azure-function-autofac-dependency-injection's People

Contributors

adrianpell avatar babybalooga avatar bcnzer avatar bradtglass avatar guillaumeguerra avatar lxalln avatar rawrspace avatar thorhelms avatar youphulsebos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.