Giter Site home page Giter Site logo

mesbah-lab-ucb / spinode Goto Github PK

View Code? Open in Web Editor NEW
1.0 0.0 0.0 4.44 MB

This code trains and implements a stochastic physics-informed neural ordinary differential equation (SPINODE) framework on a directed colloidal self-assembly test case.

Home Page: https://doi.org/10.1016/j.jcp.2022.111466

Python 15.80% Jupyter Notebook 84.20%
colloids control ode physics-informed-neural-networks self-assembly stochastic

spinode's Introduction

Stochastic Physics-Informed Neural Ordinary Differential Equations (SPINODE)

Stochastic differential equations (SDEs) are used to describe a wide variety of complex stochastic dynamical systems. Learning the hidden physics within SDEs is crucial for unraveling fundamental understanding of these systems’ stochastic and nonlinear behavior. We propose a flexible and scalable framework for training artificial neural networks to learn constitutive equations that represent hidden physics within SDEs. The proposed stochastic physics-informed neural ordinary differential equation framework (SPINODE) propagates stochasticity through the known structure of the SDE (i.e., the known physics) to yield a set of deterministic ODEs that describe the time evolution of statistical moments of the stochastic states. SPINODE then uses ODE solvers to predict moment trajectories. SPINODE learns neural network representations of the hidden physics by matching the predicted moments to those estimated from data. Recent advances in automatic differentiation and mini-batch gradient descent with adjoint sensitivity are leveraged to establish the unknown parameters of the neural networks. We demonstrate SPINODE on three benchmark in-silico case studies and analyze the framework's numerical robustness and stability. SPINODE provides a promising new direction for systematically unraveling the hidden physics of multivariate stochastic dynamical systems with multiplicative noise.

Other

Please note that the file "CSA.zip" contains example data and results for a colloidal self-assembly system case study with an exogenous input.

Help

Please direct all questions to [email protected]

Citation

@article{o2022stochastic, title={Stochastic physics-informed neural ordinary differential equations}, author={O'Leary, Jared and Paulson, Joel A and Mesbah, Ali}, journal={Journal of Computational Physics}, pages={111466}, year={2022}, publisher={Elsevier} }

spinode's People

Contributors

jtoleary avatar

Stargazers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.