Giter Site home page Giter Site logo

mrahjoo / solarpy Goto Github PK

View Code? Open in Web Editor NEW

This project forked from aqreed/solarpy

0.0 0.0 0.0 2.43 MB

Solar radiation model for flight dynamics. Based on Duffie & Beckman "Solar energy thermal processes" (1974)

License: MIT License

Python 100.00%

solarpy's Introduction

drawing

Build Status codecov.io license Binder

Description Python Solar Radiation model
Author aqreed [email protected]
Version 0.1.3
Python Version 3.6
Requires Numpy, Matplotlib

This packages aims to provide a reliable solar radiation model, mainly based on the work of Duffie, J.A., and Beckman, W. A., 1974, "Solar energy thermal processes".

The main purpose is to generate a solar beam irradiance (W/m2) prediction on:

  • any plane, thanks to the calculation of the solar vector in NED (North East Down) coordinates, suitable for its use in flight dynamics simulations...
  • any place of the earth, taking into account the solar time wrt the standard time, geometric altitude, the latitude influence on solar azimuth and solar altitude as well as sunset/sunrise time and hour angle, etc.
  • any day of the year, taking into account the variations of the extraterrestrial radiation, the equation of time, the declination, etc., throughout the year

Example 1

Solar irradiance on the southern hemisphere on October 17, at sea-level 13.01UTC (plane pointing upwards)?

import numpy as np
from solarpy import irradiance_on_plane
from datetime import datetime

vnorm = np.array([0, 0, -1])  # plane pointing zenith
h = 0  # sea-level
date = datetime(2019, 10, 17, 13, 1)  # year, month, day, hour, minute
lat = -23.5  # southern hemisphere

irradiance_on_plane(vnorm, h, date, lat)

A dedicated Jupyter Notebook on beam irradiance can be found here.

Example 2

Power output (in W) of a solar panel with the following characteristics:

  • surface of 2.1 sqm
  • efficiency of 0.2
  • pointing upwards
  • in NYC
  • on December 25, at 16.15
from numpy import array
from solarpy import solar_panel
from datetime import datetime

panel = solar_panel(2.1, 0.2, id_name='NYC_xmas')  # surface, efficiency and name
panel.set_orientation(array([0, 0, -1]))  # upwards
panel.set_position(40.73, -73.93, 0)  # NYC latitude, longitude, altitude
panel.set_datetime(datetime(2019, 12, 25, 16, 15))  # Christmas Day!
panel.power()

Example 3

Solar declination on August 5?

from solarpy import declination
from datetime import datetime

date = datetime(2019, 8, 5)  # August 5

declination(date)

Please find more notebooks on the 'examples' folder that you can open locally, or just try Binder to launch online interactive Jupyter notebooks.


NOTE: solarpy is under development and might change in the near future.


Dependencies

This package depends on Python, NumPy and Matplotlib and is usually tested on Linux with the following versions:

Python 3.6, NumPy 1.16, Matplotlib 3.0

Installation

solarpy has been written in Python3, and its version v0.1 is available in PyPi. It can be installed using:

$ pip install solarpy

To install in development mode:

$ git clone https://github.com/aqreed/solarpy.git
$ cd solarpy
$ pip install -e .

Testing

solarpy recommends py.test for running the test suite. Running from the top directory:

$ pytest

To test coverage (also from the top directory):

$ pytest --cov

Bug reporting

Please feel free to open an issue on GitHub!

License

MIT (see COPYING)

solarpy's People

Contributors

aqreed avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.