Giter Site home page Giter Site logo

efll's Introduction

GitHub tag (latest SemVer) GitHub Codacy Badge GitHub top language GitHub search hit counter GitHub last commit (branch)

eFLL (Embedded Fuzzy Logic Library)

eFLL (Embedded Fuzzy Logic Library) is a standard library for Embedded Systems to implement easy and efficient Fuzzy Systems.

Para informações avançadas, documentação e exemplos de uso em PORTUGUÊS: eFLL - Uma Biblioteca Fuzzy para Arduino e Sistemas Embarcados

For advanced information, documentation, and usage examples in ENGLISH: eFLL - A Fuzzy Library for Arduino and Embedded Systems

Characteristics

Written in C++/C, uses only standard C language library "stdlib.h", so eFLL is a library designed not only to Arduino, but any Embedded System or not how have your commands written in C.

It has no explicit limitations on quantity of Fuzzy, Fuzzy Rules, Inputs or Outputs, these limited processing power and storage of each microcontroller

It uses the process:

(MAX-MIN) and (Mamdani Minimum) for inference and composition, (CENTER OF AREA) to defuzzification in a continuous universe.

Tested with GTest for C, Google Inc.

How to install (general use)

Step 1: Go to the official project page on GitHub (Here)

Step 2: Make a clone of the project using Git or download at Download on the button "Download as zip."

Step 3: Clone or unzip (For safety, rename the folder to "eFLL") the files into some folder

Step 4: Compile and link it to your code (See Makefile)

How to install (and import to use with Arduino)

Easy Way

Step 1: Open the Arduino IDE

Step 2: In main menu, go to SKETCH >> INCLUDE LIBRARY >> MANAGE LIBRARIES

Step 3: Search for "eFLL" or "Fuzzy"

Step 4: eFLL will appear in the list, to finish, just click in INSTALL, now you can include eFLL to your sketchs

Old Way

Step 1: Go to the official project page on GitHub (Here)

Step 2: Make a clone of the project using Git or download at Download on the button "Download as zip."

Step 3: Clone or unzip (For safety, rename the folder to "eFLL") the files into Arduino libraries' folder:

Ubuntu (/usr/share/arduino/libraries/) if installed via apt-get, if not, on Windows, Mac or Linux (where you downloaded the Arduino IDE, the Library folder is inside)

Ok! The library is ready to be used!

If the installation of the library has been successfully held, to import the library is easy:

Step 4: Open your Arduino IDE, check out the tab on the top menu SKETCH → LIBRARY → Import eFLL

Brief Documentation

Class Diagram

Fuzzy object - This object includes all the Fuzzy System, through it, you can manipulate the Fuzzy Sets, Linguistic Rules, inputs and outputs.

FuzzyInput object - This object groups all entries Fuzzy Sets that belongs to the same domain.

FuzzyOutput object - This object is similar to FuzzyInput, is used to group all output Fuzzy Sets thar belongs to the same domain.

FuzzySet object - This is one of the main objects of Fuzzy Library, with each set is possible to model the system in question. Currently the library supports triangular membership functions, trapezoidal and singleton, which are assembled based on points A, B, C and D, they are passed by parameter in its constructor FuzzySet(float a, float b, float c, float d).

FuzzyRule object - This object is used to mount the base rule of Fuzzy object, which contains one or more of this object. Instantiated with FuzzyRule fr = new FuzzyRule (ID, antecedent, consequent).

FuzzyRuleAntecedent object - This object is used to compound the object FuzzyRule, responsible for assembling the antecedent of the conditional expression of a FuzzyRule.

FuzzyRuleConsequent object - This object is used to render the object FuzzyRule, responsible for assembling the output expression of a FuzzyRule.

Tips

These are all eFLL library objects that are used in the process. The next step, generally interactive is handled by three methods of the Fuzzy Class first:

bool setInput(int id, float value);

It is used to pass the Crispe input value to the system note that the first parameter is the FuzzyInput object' ID which parameter value is intended.

bool fuzzify();

It is used to start the fuzzification process, composition and inference.

And finally:

float defuzzify(int id);

REFERENCES

Authors: AJ Alves [email protected]; Co authors: Dr. Ricardo Lira [email protected], Msc. Marvin Lemos [email protected], Douglas S. Kridi [email protected], Kannya Leal [email protected]

Special Thanks to Contributors

@mikebutrimov, @tzikis, @na7an

LICENSE

MIT License

efll's People

Contributors

alvesoaj avatar jpuriol avatar mikebutrimov avatar tzikis avatar servetcoskun avatar

Stargazers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.