Giter Site home page Giter Site logo

opennmt / ctranslate2 Goto Github PK

View Code? Open in Web Editor NEW
2.9K 56.0 255.0 13.78 MB

Fast inference engine for Transformer models

Home Page: https://opennmt.net/CTranslate2

License: MIT License

CMake 0.84% C++ 80.60% Shell 0.41% C 0.05% Python 12.31% Cuda 5.48% Dockerfile 0.31%
neural-machine-translation cpp mkl quantization cuda thrust opennmt deep-neural-networks openmp onednn

ctranslate2's Introduction

This project is considered obsolete as the Torch framework is no longer maintained. If you are starting a new project, please use an alternative in the OpenNMT family: OpenNMT-tf (TensorFlow) or OpenNMT-py (PyTorch) depending on your requirements.

Build Status codecov

OpenNMT: Open-Source Neural Machine Translation

OpenNMT is a full-featured, open-source (MIT) neural machine translation system utilizing the Torch mathematical toolkit.

The system is designed to be simple to use and easy to extend, while maintaining efficiency and state-of-the-art translation accuracy. Features include:

  • Speed and memory optimizations for high-performance GPU training.
  • Simple general-purpose interface, only requires and source/target data files.
  • C++ implementation of the translator for easy deployment.
  • Extensions to allow other sequence generation tasks such as summarization and image captioning.

Installation

OpenNMT only requires a Torch installation with few dependencies.

  1. Install Torch
  2. Install additional packages:
luarocks install tds
luarocks install bit32 # if using LuaJIT

For other installation methods including Docker, visit the documentation.

Quickstart

OpenNMT consists of three commands:

  1. Preprocess the data.
th preprocess.lua -train_src data/src-train.txt -train_tgt data/tgt-train.txt -valid_src data/src-val.txt -valid_tgt data/tgt-val.txt -save_data data/demo
  1. Train the model.
th train.lua -data data/demo-train.t7 -save_model model
  1. Translate sentences.
th translate.lua -model model_final.t7 -src data/src-test.txt -output pred.txt

For more details, visit the documentation.

Citation

A technical report on OpenNMT is available. If you use the system for academic work, please cite:

@ARTICLE{2017opennmt,
  author = {{Klein}, G. and {Kim}, Y. and {Deng}, Y. and {Senellart}, J. and {Rush}, A.~M.},
  title = "{OpenNMT: Open-Source Toolkit for Neural Machine Translation}",
  journal = {ArXiv e-prints},
  eprint = {1701.02810}
}

Acknowledgments

Our implementation utilizes code from the following:

Additional resources

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.