Giter Site home page Giter Site logo

ensc2003-notes's Introduction

something something i'm not responsible for lost marks. have fun.

Constants

Name Symbol Value
Speed of light $c$ $3\times 10^8$
Elementary charge $q_e$ $1.6022\times 10^{-19}$
Magnetic constant $\mu_0$ $4\pi \times 10^{-7}$

Basic math

$$ \begin{align} x &= \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\ \sin(\theta) &= \cos(\theta-90°)\\ \cos(\theta) &= \sin(\theta+90°)\\ \text{Euler's formula: } e^{j\theta} &= \cos(\theta)+j\sin(\theta) \end{align} $$

Chapter 1

$$ \begin{align} \text{Lumped model: } \lambda &= \frac{c}{f} \gggtr \text{dimension} \text{ (At least 10 times)}\\ i(t)&=\frac{dq}{dt} \Leftrightarrow q(t)=\int i(t)\cdot dt\\ P&=v\times i=i\times \frac{W}{q}\\ v&=\frac{W}{q} \Leftrightarrow W=v\times q = \int v\times i \cdot dt\\ \end{align} $$

Chapter 4

$$ \begin{align} \text{Load line: } i_x &= -\frac{v_x}{R_T}+ \frac{v_t}{R_T}\\ \text{General: } A_v &= \frac{v_{out}}{v_{in}}\\ \text{Inverting: } A_v &= -\frac{R_f}{R_{in}}\\ \text{Non Inverting: } A_v &= 1+\frac{R_f}{R_{1}}\\ \text{Series of op amps total: } A_v &= (A_v)_1\times(A_v)_2\times \dots\times (A_v)_n \end{align} $$

Inverting Non-inverting

Chapter 5

Capacitor

$$ \begin{align} C &= \frac{q}{v}\\ i(t) = C\frac{dv}{dt} &\Leftrightarrow v(t) = \frac{1}{C}\int_0^t i(t)\cdot dt\\ \text{Series: }\frac{1}{C_T} &= \sum^N_{i=0}\frac{1}{C_i}\\ \text{Parallel: }C_T &= \sum^N_{i=0}C_i\\ \text{Energy: }E &= \frac{1}{2}Cv^2 \end{align} $$

Differential equation solution

Where $v_s=v_\infty$:

$$ \begin{align} \tau &= R\times C\\ v_C(t) &= \begin{cases} \begin{array}{lr} v_0 & t\leq 0\\ v_\infty+(v_0-v_\infty)e^{-t/\tau} & t > 0 \end{array} \end{cases}\\ & v_0 e^{-t/\tau} \text{ (Natural response, no input)}\\ & v_\infty\left(1-e^{-t/\tau}\right) \text{ (Forced response, input)}\\ i_C(t) &= \frac{v_s-v_C(t)}{R}=\frac{-(v_0-v_\infty)e^{-t/\tau}}{R} \end{align} $$

  1. When $t>0$, remove all independent sources, find equivalent resistance and capacitance, find $\tau$.
  2. Set C as open circuit, find initial capacitor voltage $v_0$ at $t=0$
  3. Set C as open circuit, find final capacitor voltage $v_\infty$ at $t\to\infty$

Inductor

$$ \begin{align} L &= \frac{\lambda}{i}\\ v(t)=L\frac{di}{dt} &\Leftrightarrow i(t)=\frac{1}{L}\int_0^tv\cdot dt\\ \text{Series: }L_T &= \sum^N_{i=0}L_i\\ \text{Parallel: }\frac{1}{L_T} &= \sum^N_{i=0}\frac{1}{L_i}\\ \text{Energy: }E &= \frac{1}{2}Li^2 \end{align} $$

Differential equation solution

Where $v_s/R=i_\infty$:

$$ \begin{align} \tau &= \frac{L}{R}\\ i(t) &= \begin{cases} \begin{array}{lr} i_0 & t\leq 0\\ i_\infty+(i_0-i_\infty)e^{-t/\tau} & t > 0 \end{array} \end{cases}\\ & i_0 e^{-t/\tau} \text{ (Natural response, no input)}\\ & i_\infty\left(1-e^{-t/\tau}\right) \text{ (Forced response, input)}\\ \end{align} $$

  1. When $t>0$, remove all independent sources, find equivalent resistance and inductance, find $\tau$.
  2. Set L as short circuit, find initial inductor current $i_0$ at $t=0$
  3. Set L as short circuit, find final inductor current $i_\infty$ at $t\to\infty$

Voltage drop in DC for capacitor and inductor at steady state

CAPACITOR:          INDUCTOR:
v_T _               v_T _
    |   <- V_1          |   <- V_1
C1  = ) <- V_D1     L1  3 ) <- V_D1
    |                   |
C2  =               C2  3
    |                   |
   ...                 ...
    |                   |
CN  =               LN  3
    |                   |
GND *               GND *

Capacitor

Current through capacitors in series is the same, so all capacitors have same charge stored $q$.

$$ \begin{align} \text{Voltage drop over capacitor $i$: } v_{Di} &= v_T\frac{C_T}{C_i}\\ \text{Voltage divider: } v_i &= v_T\frac{C_T}{\frac{1}{C_i}+\frac{1}{C_{i+1}}+\dots+\frac{1}{C_N}}\\ \end{align} $$

Inductor

No voltage drop in steady state (Inductor is a short circuit)

Chapter 7

Maximum power transfer in AC

$$ \begin{align} \text{Condition: } &\overline{Z_L} = \overline{Z_S^*}\\ \text{Maximum power to load (50\%): } &2P_\text{avg}=P_\text{rms}\cdot\sqrt{2} = P_\text{max} = \frac{{|V_S|}^2}{4R_S}\\ & = \frac{{|V_L|}^2}{4R_L}\\ \text{Total maximum power: } &2P_\text{avg}=P_\text{rms}\cdot\sqrt{2} = P_\text{max} = \frac{{|V_S|}^2}{2R_S} \end{align} $$

Complex Power

Where $\bar{V}=V\angle\theta$ and $\bar{I}=I\angle\phi$:

$$ \let\lb=( \let\rb=) \def({\left\lb} \def){\right\rb} % Put \left(,\right) on (,) \begin{align} \text{Complex [VA]: }\bar{S} &= \bar{V}\text{rms}\times \bar{I}\text{rms}^* = \frac{\bar{V}\times \bar{I}^*}{2} = \frac{VI}{2}\angle(\theta-\phi)\ \text{Apparent [VA]: } |\bar{S}|\ \text{Real [W]: } P &= |\bar{S}| \cos(\theta-\phi) = \text{Re}(\bar{S})\ \text{Reactive [VAR]: } Q &= |\bar{S}| \sin(\theta-\phi) = \text{Im}(\bar{S})\ Q &= P\tan(\arccos(\text{PF}))\ \text{Power Factor (PF): } \text{PF} &= \frac{P}{|\bar{S}|} = \frac{P}{\sqrt{P^2+Q^2}}\ \text{PF from angles: } \text{PF} &= \cos(\theta-\phi) = \cos(\arctan(\frac{Q}{P}))\ \end{align} $$

and where $\bar{Z}_\text{load} = Z_\text{load}\angle\lambda = R+jX$:

$$ \let\lb=( \let\rb=) \def({\left\lb} \def){\right\rb} % Put \left(,\right) on (,) \begin{align} \text{PF from impedance: } \text{PF} &= \frac{\text{Re}(\bar{Z}\text{load})}{|\bar{Z}\text{load}|} = \frac{R}{\sqrt{R^2+X^2}} \ \text{PF from angles: } \text{PF} &= \cos(\lambda) = \cos(\arctan(\frac{X}{R})) \end{align} $$

Types of power factors

Where $\bar{S}=|\bar{S}|\angle\varphi$:

$$ \varphi = \arctan\left(\frac{Q}{P}\right)$$

Lagging Leading Unity
Voltage Current behind Current ahead In phase
Load type Inductive Capacitive Resistive
$Q$ $Q&gt;0$ $Q&lt;0$ $Q=0$
$\varphi$ $\varphi&gt;0°$ $\varphi&lt;0°$ $\varphi=0°$
PF [Load] $[0,1)$ $[0,1)$ $1$
PF [Source] $[0,-1)$ $[0,-1)$ $-1$

Chapter 8

$$ \begin{align} \text{Faraday's law: }\varepsilon &= -N\frac{d\varPhi}{dt}\\ \text{Ampere's law: }B &= \frac{\mu_0 I}{2\pi r}\\ \end{align} $$

Transformer

Step up: $n&gt;1$
Step down: $n&lt;1$

$$ \begin{align} \frac{V_s}{V_p} &= \frac{N_s}{N_p}=\frac{i_p}{i_s}=n\\ \bar{Z}_{in} &= \frac{1}{n^2}\bar{Z}_L \end{align} $$

Derived from equation 42:

$$ \begin{align*} i_s &= i_p/n \\ &= \frac{V_p}{\frac{1}{n^2}\times \bar{Z}_{L}\times n} \\ \end{align*}\\ $$

$$ \begin{align} i_s &=\frac{V_p\times n}{\bar{Z}_{L}}\\ \end{align} $$

Motor

Note - this section on motors is a bit sketchy, best to refer to slides!

For permanent motors, define permanent torque constant $k_{TP}=k_T\varPhi$
and define permanent armature constant $k_{aP} = k_a\varPhi$

Note, back emf should oppose $v_a$ and $i_a$

$$ \begin{align} \text{Back emf: }e_b=k_a\times \varPhi\times \omega_m = k_{aP} \times\omega_m\\ \end{align} $$

For ideal motor, torque and armature constants are the same: $k_a=k_T$, $k_{aP}=k_{TP}$

$$ \begin{align} \text{Heat dissipated: } P_e &= e_b\times i_a = k_{aP} \times \omega_m \times i_a\\ \text{Mechanical power: } P_m &= \omega_m\times T_L = k_{TP}\times \omega_m \times i_a\\ \end{align} $$

Define $p$ as number of magnetic poles and $M$ as the number of parallel paths in armature winding.

$$ \begin{align} \text{Constants for ideal motor: } k_a &= k_T = \frac{pN}{2\pi M} \end{align} $$

Most important motor equations to solve

For permanent magnet DC motor in DC steady state:
Define viscous frictional damping coefficient $b$ and load torque $T_L$

  • If $b$ is not defined, assume no damping (??? todo - check)

$$ \begin{align} &\begin{cases} 0 &= v_a - i_a R_a - k_{aP} \omega_m &= v_a - i_a R_a - e_b \\ k_{TP} i_a &= T_L + b\times \omega_m \end{cases}\\ \end{align} $$

Define total resistance $R = R_\text{armature} + R_\text{source}$
These are derived from the previous equations:

$$ \begin{align} &\text{Analog speed control (Voltage): } T = \frac{k_{TP}}{R}v_s - \frac{k_{TP}k_{aP}}{R} \omega_m\\ &\text{Analog speed control (Current): } T = \frac{k_{TP}R_S}{R}i_s - \frac{k_{TP}k_{aP}}{R} \omega_m \end{align} $$

 + v_a
 |
 s   R_a
 |
 3   L_a
 |
(M) | I_a
 |  V
 - GND

Chapter 9

Axioms and theorems

Operations are also commutative, associative.

Name 1 2
Identity $X+0=X$ $X\cdot 1 = X$
Null $X+1=1$ $X\cdot 0=0$
Idempotency $X+X=X$ $X\cdot X=X$
Involution $(X')'=X$
Complementarity $X+X'=1$ $X\cdot X'=0$
Uniting $X\cdot Y + X\cdot Y'=X$ $(X+Y)(X+Y')=X$
Absorption $X+X\cdot Y=X$ $X\cdot(X+Y)=X$
Absorption $(X+Y')\cdot Y=X\cdot Y$ $(X\cdot Y')+Y=X+Y$
Distributivity $X\cdot Y+X\cdot Z = X (Y+Z)$ $X+(Y\cdot Z)=(X+Y)(X+Z)$
Factoring $(X+Y)\cdot(X'+Z)$ $X\cdot Y+X'\cdot Z$
$=X\cdot Z+X'\cdot Y$ $=(X+Z)\cdot(X'+Y)$
Consensus $X\cdot Y+Y\cdot Z+X'\cdot Z$ $(X+Y)\cdot(Y+Z)\cdot(X'+Z)$
$=X\cdot Y+X'\cdot Z$ $=(X+Y)\cdot(X'+Z)$
DeMorgan's $(X+Y+\dots)'$ $(X\cdot Y\cdot \dots)'$
$=X'\cdot Y'\cdot\dots$ $=X'+Y'+\dots$

Sum of products

A min term is the intersection of the inverse of the inputs, or the NOR of the inputs.

$\dotsc$ $A$ $B$ $C$ minterm
$\dotsc$ $0$ $0$ $0$ $m_0=\dotsc\cdot A'\cdot B'\cdot C'$
$\dotsc$ $0$ $0$ $1$ $m_1=\dotsc\cdot A'\cdot B'\cdot C$
$\dotsc$ $0$ $1$ $0$ $m_2=\dotsc\cdot A'\cdot B\cdot C'$
$\dotsc$ $\dots$ $\dots$ $\dots$ $\dotsc$

Sum of products is the sum of the minterms when $F(A,B,C,\dots)$ is $1$ (TRUE).
Example

$A$ $B$ $F(A,B)$ minterm
$0$ $0$ $1$ $m_0=A'\cdot B'$
$0$ $1$ $0$ $m_1=A'\cdot B$
$1$ $0$ $0$ $m_2=A\cdot B'$
$1$ $1$ $1$ $m_3=A\cdot B$

In the example,

$$ \begin{align*} F(A,B) &= \sum\left(m_0,m_3\right)\\ &= A'\cdot B'+A\cdot B \end{align*} $$

Product of sums

A max term is the union of the inverse of the inputs, or the NAND of the inputs.

$\dotsc$ $A$ $B$ $C$ maxterm
$\dotsc$ $0$ $0$ $0$ $M_0=\dotsc+A+B +C$
$\dotsc$ $0$ $0$ $1$ $M_1=\dotsc+A+B +C'$
$\dotsc$ $0$ $1$ $0$ $M_2=\dotsc+A+B'+C$
$\dotsc$ $\dots$ $\dots$ $\dots$ $\dotsc$

Product of sums is the product of the maxterms when $F(A,B,C,\dots)$ is $0$ (FALSE).
Example

$A$ $B$ $F(A,B)$ maxterm
$0$ $0$ $1$ $M_0=A +B$
$0$ $1$ $0$ $M_1=A +B'$
$1$ $0$ $0$ $M_2=A'+B$
$1$ $1$ $1$ $M_3=A'+B'$

In the example,

$$ \begin{align*} F(A,B) &= \prod\left(M_1,M_2\right)\\ &= (A+B')\cdot(A'+B) \end{align*} $$

Product of sums is equal to sum of products

$$ \begin{align*} F(A,B) &= (A+B')\cdot(A'+B)\\ &= A\cdot A'+A\cdot B+B'\cdot A'+B'\cdot B &\text{(Distributivity)}\\ &= A\cdot B+B'\cdot A' &\text{(Complementarity)}\\ \end{align*} $$

ensc2003-notes's People

Contributors

peter-tanner avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.