Giter Site home page Giter Site logo

sahi's Introduction

SAHI: Slicing Aided Hyper Inference

A lightweight vision library for performing large scale object detection & instance segmentation

teaser

Open In Colab downloads downloads
pypi version conda version ci

Overview

Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems.

Getting Started

Blogpost

Check the official SAHI blog post.

Installation
  • Install sahi using pip:
pip install sahi
  • On Windows, Shapely needs to be installed via Conda:
conda install -c conda-forge shapely
  • Install your desired version of pytorch and torchvision:
pip install torch torchvision
  • Install your desired detection framework (such as mmdet or yolov5):
pip install mmdet mmcv
pip install yolov5

Usage

From Python:
  • Sliced inference:
result = get_sliced_prediction(
    image,
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.2,
    overlap_width_ratio = 0.2
)

Check YOLOv5 + SAHI demo: Open In Colab

Check MMDetection + SAHI demo: Open In Colab

  • Slice an image:
from sahi.slicing import slice_image

slice_image_result = slice_image(
    image=image_path,
    output_file_name=output_file_name,
    output_dir=output_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)
  • Slice a coco formatted dataset:
from sahi.slicing import slice_coco

coco_dict, coco_path = slice_coco(
    coco_annotation_file_path=coco_annotation_file_path,
    image_dir=image_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)

Refer to slicing notebook for detailed usage.

From CLI:
python scripts/predict.py --source image/file/or/folder --model_path path/to/model --config_path path/to/config

will perform sliced inference on default parameters and export the prediction visuals to runs/predict/exp folder.

You can specify sliced inference parameters as:

python scripts/predict.py --slice_width 256 --slice_height 256 --overlap_height_ratio 0.1 --overlap_width_ratio 0.1 --conf_thresh 0.25 --source image/file/or/folder --model_path path/to/model --config_path path/to/config
  • Specify postprocess type as --postprocess_type UNIONMERGE or --postprocess_type NMS to be applied over sliced predictions

  • Specify postprocess match metric as --match_metric IOS for intersection over smaller area or --match_metric IOU for intersection over union

  • Specify postprocess match threshold as --match_thresh 0.5

  • Add --class_agnostic argument to ignore category ids of the predictions during postprocess (merging/nms)

  • If you want to export prediction pickles and cropped predictions add --pickle and --crop arguments. If you want to change crop extension type, set it as --visual_export_format JPG.

  • If you don't want to export prediction visuals, add --novisual argument.

  • By default, scripts apply both standard and sliced prediction (multi-stage inference). If you don't want to perform sliced prediction add --no_sliced_pred argument. If you don't want to perform standard prediction add --no_standard_pred argument.

  • If you want to perform prediction using a COCO annotation file, provide COCO json path as add --coco_file path/to/coco/file and coco image folder as --source path/to/coco/image/folder, predictions will be exported as a coco json file to runs/predict/exp/results.json. Then you can use coco_error_analysis.py script to calculate COCO evaluation results.

Find detailed info on script usage (predict, coco2yolov5, coco_error_analysis) at SCRIPTS.md.

FiftyOne Utilities

Explore COCO dataset via FiftyOne app:

For supported version: pip install fiftyone>=0.11.1

from sahi.utils.fiftyone import launch_fiftyone_app

# launch fiftyone app:
session = launch_fiftyone_app(coco_image_dir, coco_json_path)

# close fiftyone app:
session.close()
Convert predictions to FiftyOne detection:
from sahi import get_sliced_prediction

# perform sliced prediction
result = get_sliced_prediction(
    image,
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.2,
    overlap_width_ratio = 0.2
)

# convert detections into fiftyone detection format
fiftyone_detections = result.to_fiftyone_detections()

COCO Utilities

COCO dataset creation:
  • import required classes:
from sahi.utils.coco import Coco, CocoCategory, CocoImage, CocoAnnotation
  • init Coco object:
coco = Coco()
  • add categories starting from id 0:
coco.add_category(CocoCategory(id=0, name='human'))
coco.add_category(CocoCategory(id=1, name='vehicle'))
  • create a coco image:
coco_image = CocoImage(file_name="image1.jpg", height=1080, width=1920)
  • add annotations to coco image:
coco_image.add_annotation(
  CocoAnnotation(
    bbox=[x_min, y_min, width, height],
    category_id=0,
    category_name='human'
  )
)
coco_image.add_annotation(
  CocoAnnotation(
    bbox=[x_min, y_min, width, height],
    category_id=1,
    category_name='vehicle'
  )
)
  • add coco image to Coco object:
coco.add_image(coco_image)
  • after adding all images, convert coco object to coco json:
coco_json = coco.json
  • you can export it as json file:
from sahi.utils.file import save_json

save_json(coco_json, "coco_dataset.json")
Convert COCO dataset to ultralytics/yolov5 format:
from sahi.utils.coco import Coco

# init Coco object
coco = Coco.from_coco_dict_or_path("coco.json", image_dir="coco_images/")

# export converted YoloV5 formatted dataset into given output_dir with a 85% train/15% val split
coco.export_as_yolov5(
  output_dir="output/folder/dir",
  train_split_rate=0.85
)
Get dataset stats:
from sahi.utils.coco import Coco

# init Coco object
coco = Coco.from_coco_dict_or_path("coco.json")

# get dataset stats
coco.stats
{
  'num_images': 6471,
  'num_annotations': 343204,
  'num_categories': 2,
  'num_negative_images': 0,
  'num_images_per_category': {'human': 5684, 'vehicle': 6323},
  'num_annotations_per_category': {'human': 106396, 'vehicle': 236808},
  'min_num_annotations_in_image': 1,
  'max_num_annotations_in_image': 902,
  'avg_num_annotations_in_image': 53.037243084530985,
  'min_annotation_area': 3,
  'max_annotation_area': 328640,
  'avg_annotation_area': 2448.405738278109,
  'min_annotation_area_per_category': {'human': 3, 'vehicle': 3},
  'max_annotation_area_per_category': {'human': 72670, 'vehicle': 328640},
}

Find detailed info on COCO utilities (yolov5 conversion, slicing, subsampling, filtering, merging, splitting) at COCO.md.

MOT Challenge Utilities

MOT Challenge formatted ground truth dataset creation:
  • import required classes:
from sahi.utils.mot import MotAnnotation, MotFrame, MotVideo
  • init video:
mot_video = MotVideo(name="sequence_name")
  • init first frame:
mot_frame = MotFrame()
  • add annotations to frame:
mot_frame.add_annotation(
  MotAnnotation(bbox=[x_min, y_min, width, height])
)

mot_frame.add_annotation(
  MotAnnotation(bbox=[x_min, y_min, width, height])
)
  • add frame to video:
mot_video.add_frame(mot_frame)
  • export in MOT challenge format:
mot_video.export(export_dir="mot_gt", type="gt")
  • your MOT challenge formatted ground truth files are ready under mot_gt/sequence_name/ folder.

Find detailed info on MOT utilities (ground truth dataset creation, exporting tracker metrics in mot challenge format) at MOT.md.

Contributing

sahi library currently supports all YOLOv5 models and MMDetection models. Moreover, it is easy to add new frameworks.

All you need to do is, creating a new class in model.py that implements DetectionModel class. You can take the MMDetection wrapper or YOLOv5 wrapper as a reference.

Before opening a PR:

  • Install required development packages:
pip install -U -e .[dev]
  • Reformat with black and isort:
black . --config pyproject.toml
isort .

Contributers

sahi's People

Contributors

fcakyon avatar sinanonur avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.