Giter Site home page Giter Site logo

hmc's Introduction

hmc

Decision Tree Hierachical Multi-Classifier

A thin wrapper for sklearn DecisionTreeClassifier for hierarchical classes, implementing HSC-Clus [1].

Define a class hierarchy. Class hierarchies are constructed with the root node. Nodes are added with child parent pairs.

import hmc
ch = hmc.ClassHierarchy("colors")
ch.add_node("light", "colors")
ch.add_node("dark", "colors")
ch.add_node("white", "light")
ch.add_node("black", "dark")
ch.add_node("gray", "dark")
ch.add_node("slate", "gray")
ch.add_node("ash", "gray")

Pretty print it.

>>> ch.print_()
└─colors
  ├─dark
  │ ├─black
  │ └─gray
  │   ├─ash
  │   └─slate
  └─light
    └─white

Load some data from the included functions and split for training. The class hierarchy itself can also be loaded from the module.

ch = hmc.load_shades_class_hierachy()
X, y = hmc.load_shades_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.50)

Each parent node, of at least one child, will generate a decision tree classification stage. Stages are assigned depth first, ascending alpha.

>>> dt.stages
[{'classes': ['dark', 'light', 'colors'],
  'depth': 0,
  'labels': ['dark', 'light'],
  'stage': 'colors'},
{'classes': ['black', 'gray', 'dark'],
  'depth': 1,
  'labels': ['black', 'gray'],
  'stage': 'dark'},
{'classes': ['ash', 'slate', 'gray'],
  'depth': 2,
  'labels': ['ash', 'slate'],
  'stage': 'gray'},
{'classes': ['white', 'light'],
  'depth': 1,
  'labels': ['white'],
  'stage': 'light'}]

The hmc.DecisionTreeHierarchicalClassifier is idiomatic to the sklearn tree.DecisionTreeClassifier. Fit, predict and score the same way. Traditional multi-classification average accuracy is comparable.

from sklearn import tree
dt = tree.DecisionTreeClassifier()
dt = dt.fit(X_train, y_train)
dt_predicted = dt.predict(X_test)
dt_accuracy = dt.score(X_test, y_test)

dth = hmc.DecisionTreeHierarchicalClassifier(ch)
dth = dth.fit(X_train, y_train)
dth_predicted = dth.predict(X_test)
dth_accuracy = dth.score(X_test, y_test)
>>> dt_accuracy
0.48526522593320237
>>> dth_accuracy
0.45776031434184677

Additional hierarchical multi-classification specific metrics [2] are provided.

import hmc.metrics as metrics

>>> metrics.accuracy_score(ch, y_test, dth_predicted)
0.45776031434184677
>>> metrics.precision_score_ancestors(ch, y_test, dth_predicted)
0.8
>>> metrics.recall_score_ancestors(ch, y_test, dth_predicted)
0.8052190121155638
>>> metrics.f1_score_ancestors(ch, y_test, dth_predicted)
0.8026010218300047
>>> metrics.precision_score_descendants(ch, y_test, dth_predicted)
0.647191011235955
>>> metrics.recall_score_descendants(ch, y_test, dth_predicted)
0.6260869565217392
>>> metrics.f1_score_descendants(ch, y_test, dth_predicted)
0.63646408839779

Ancestor and Descendant precision and recall scores are calculated as the fraction of shared ancestor or descendant classes over the sum of either the predicted or true class for precision and recall respectively [3].

true = ['dark', 'white', 'gray']

pred_sibling = ['dark', 'white', 'black']

>>> metrics.accuracy_score(ch, true, pred_sibling)
0.66666666666666663
>>> metrics.precision_score_ancestors(ch, true, pred_sibling)
0.8
>>> metrics.precision_score_descendants(ch, true, pred_sibling)
0.8571428571428571

pred_narrower = ['dark', 'white', 'ash']

>>> metrics.accuracy_score(ch, true, pred_narrower)
0.66666666666666663
>>> metrics.precision_score_ancestors(ch, true, pred_narrower)
0.8333333333333334
>>> metrics.precision_score_descendants(ch, true, pred_narrower)
1.0

pred_broader = ['dark', 'white', 'dark']

>>> metrics.accuracy_score(ch, true, pred_broader)
0.66666666666666663
>>> metrics.precision_score_ancestors(ch, true, pred_broader)
1.0
>>> metrics.precision_score_descendants(ch, true, pred_broader)
0.8181818181818182
  1. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multi-label classification. Mach Learn Machine Learning, 73(2), 185-214.
  2. Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437. doi:10.1016/j.ipm.2009.03.002
  3. Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. In Proceedings of the AAAI 2007 workshop "Evaluation methods for machine learning" (pp. 1–6).

hmc's People

Contributors

davidwarshaw avatar maxfarago avatar vickitoy avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.