Giter Site home page Giter Site logo

stdlib-js / ndarray-dispatch Goto Github PK

View Code? Open in Web Editor NEW
1.0 3.0 0.0 2.13 MB

Create an ndarray function interface which performs multiple dispatch.

Home Page: https://github.com/stdlib-js/stdlib

License: Apache License 2.0

JavaScript 100.00%
nodejs javascript stdlib node node-js ndarray multidimensional array matrix tensor

ndarray-dispatch's Introduction

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Dispatch

NPM version Build Status Coverage Status

Create an ndarray function interface which performs multiple dispatch.

Installation

npm install @stdlib/ndarray-dispatch

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var dispatch = require( '@stdlib/ndarray-dispatch' );

dispatch( fcns, types, data, nargs, nin, nout )

Returns an ndarray function interface which performs multiple dispatch.

var unary = require( '@stdlib/ndarray-base-unary' );
var Float64Array = require( '@stdlib/array-float64' );
var Float32Array = require( '@stdlib/array-float32' );
var ndarray = require( '@stdlib/ndarray-ctor' );

function foo( x ) {
    return x * 10.0;
}

function bar( x ) {
    return x * 5.0;
}

// Define a list of ndarray functions for applying a unary callback:
var fcns = [
    unary,
    unary
];

// Define a one-dimensional list of input and output array types:
var types = [
    'float64', 'float64', // input, output
    'float32', 'float32'  // input, output
];

// Define a list of callbacks which should be applied based on the provided array types:
var data = [
    foo,
    bar
];

// Define the total number of input arguments:
var nargs = 2; // input_array + output_array

// Define the number of input ndarrays:
var nin = 1;

// Define the number of output ndarrays:
var nout = 1;

// Create an ndarray function interface:
var fcn = dispatch( fcns, types, data, nargs, nin, nout );

// ...

var xbuf = new Float64Array( [ 1.0, 2.0, 3.0 ] );
var ybuf = new Float64Array( xbuf.length );

var x = ndarray( 'float64', xbuf, [ 3 ], [ 1 ], 0, 'row-major' );
var y = ndarray( 'float64', ybuf, [ 3 ], [ 1 ], 0, 'row-major' );

fcn( x, y );
// ybuf => <Float64Array>[ 10.0, 20.0, 30.0 ]

xbuf = new Float32Array( [ 1.0, 2.0, 3.0 ] );
ybuf = new Float32Array( xbuf.length );

x = ndarray( 'float32', xbuf, [ 3 ], [ 1 ], 0, 'row-major' );
y = ndarray( 'float32', ybuf, [ 3 ], [ 1 ], 0, 'row-major' );

fcn( x, y );
// ybuf => <Float32Array>[ 5.0, 10.0, 15.0 ]

The function accepts the following arguments:

  • fcns: list of ndarray functions.
  • types: one-dimensional list of ndarray argument data types. The length of types must be the number of ndarray functions multiplied by nin+nout. If fcns is a function, rather than a list, the number of ndarray functions is computed as types.length / (nin+nout).
  • data: ndarray function data (e.g., callbacks). If a list, the length of data must equal the number of ndarray functions. If null, a returned ndarray function interface does not provide a data argument to an invoked ndarray function.
  • nargs: total number of ndarray function interface arguments.
  • nin: number of input ndarrays.
  • nout: number of output ndarrays.

Notes

  • A returned ndarray function interface has the following signature:

    f( x, y, ... )
    

    where

  • The number of ndarray function interface parameters is derived from nargs, the number of input ndarrays is derived from nin, and the number of output ndarrays is derived from nout.

  • An ndarray function (i.e., a value provided for the fcns argument) should have the following signature:

    f( arrays[, data] )
    

    where

    • arrays: array containing input and output ndarrays.
    • data: ndarray function data (e.g., a callback).
  • For convenience, a single ndarray function may be provided which will be invoked whenever the ndarray argument data types match a sequence of types in types. Providing a single ndarray function is particularly convenient for the case where, regardless of array data types, traversing arrays remains the same, but the ndarray function data differs (e.g., callbacks which differ based on the array data types). For example, the following

    var unary = require( '@stdlib/ndarray-base-unary' );
    
    function foo( x ) {
        return x * 10.0;
    }
    
    function bar( x ) {
        return x * 5.0;
    }
    
    var fcns = [
        unary,
        unary
    ];
    var types = [
        'float64', 'float64',
        'float32', 'float32'
    ];
    var data = [
        foo,
        bar
    ];
    
    var fcn = dispatch( fcns, types, data, 2, 1, 1 );

    is equivalent to

    var unary = require( '@stdlib/ndarray-base-unary' );
    
    function foo( x ) {
        return x * 10.0;
    }
    
    function bar( x ) {
        return x * 5.0;
    }
    
    var types = [
        'float64', 'float64',
        'float32', 'float32'
    ];
    var data = [
        foo,
        bar
    ];
    
    var fcn = dispatch( unary, types, data, 2, 1, 1 );

Examples

var unary = require( '@stdlib/ndarray-base-unary' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var abs = require( '@stdlib/math-base-special-abs' );
var Float64Array = require( '@stdlib/array-float64' );
var dispatch = require( '@stdlib/ndarray-dispatch' );

var types = [ 'float64', 'float64' ];

var data = [
    abs
];

var absolute = dispatch( unary, types, data, 2, 1, 1 );

var xbuf = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0 ] );
var ybuf = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

var x = ndarray( 'float64', xbuf, [ 5 ], [ 1 ], 0, 'row-major' );
var y = ndarray( 'float64', ybuf, [ 5 ], [ 1 ], 0, 'row-major' );

absolute( x, y );
console.log( ybuf );
// => <Float64Array>[ 1.0, 2.0, 3.0, 4.0, 5.0 ]

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

ndarray-dispatch's People

Contributors

stdlib-bot avatar

Stargazers

 avatar

Watchers

 avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.