Giter Site home page Giter Site logo

stdlib-js / utils-timeit Goto Github PK

View Code? Open in Web Editor NEW
1.0 3.0 0.0 604 KB

Time a snippet.

Home Page: https://github.com/stdlib-js/stdlib

License: Apache License 2.0

Makefile 15.94% JavaScript 84.06%
nodejs javascript stdlib node node-js utilities utility utils util time timer timeit tic toc benchmark bench clock measure performance perf

utils-timeit's Introduction

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

timeit

NPM version Build Status Coverage Status

Time a snippet.

Installation

npm install @stdlib/utils-timeit

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).
  • To use as a general utility for the command line, install the corresponding CLI package globally.

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var timeit = require( '@stdlib/utils-timeit' );

timeit( code, [options,] clbk )

Times a snippet.

var code = 'var x = Math.pow( Math.random(), 3 );';
code += 'if ( x !== x ) {';
code += 'throw new Error( \'Something went wrong.\' );';
code += '}';

timeit( code, done );

function done( error, results ) {
    if ( error ) {
        throw error;
    }
    console.dir( results );
    /* e.g., =>
        {
            'iterations': 1000000,
            'repeats': 3,
            'min': [0,135734733],       // [seconds,nanoseconds]
            'elapsed': 0.135734733,     // seconds
            'rate': 7367311.062526641,  // iterations/second
            'times': [                  // raw timing results
                [0,145641393],
                [0,135734733],
                [0,140462721]
            ]
        }
    */
}

The function supports the following options:

  • before: setup code. Default: "".
  • after: cleanup code. Default: "".
  • iterations: number of iterations. If null, the number of iterations is determined by trying successive powers of 10 until the total time is at least 0.1 seconds. Default: 1e6.
  • repeats: number of repeats. Default: 3.
  • asynchronous: boolean indicating whether a snippet is asynchronous. Default: false.

To perform any setup or initialization, provide setup code.

var setup = 'var randu = require( \'@stdlib/random-base-randu\' );';
setup += 'var pow = require( \'@stdlib/math-base-special-pow\' );';

var code = 'var x = pow( randu(), 3 );';
code += 'if ( x !== x ) {';
code += 'throw new Error( \'Something went wrong.\' );';
code += '}';

var opts = {
    'before': setup
};

timeit( code, opts, done );

function done( error, results ) {
    if ( error ) {
        throw error;
    }
    console.dir( results );
}

To perform any cleanup, provide cleanup code.

var setup = 'var randu = require( \'@stdlib/random-base-randu\' );';
setup += 'var hypot = require( \'@stdlib/math-base-special-hypot\' );';

var code = 'var h = hypot( randu()*10, randu()*10 );';
code += 'if ( h < 0 || h > 200 ) {';
code += 'throw new Error( \'Something went wrong.\' );';
code += '}';

var cleanup = 'if ( h !== h ) {';
cleanup += 'throw new Error( \'Something went wrong.\' );';
cleanup += '}';

var opts = {
    'before': setup,
    'after': cleanup
};

timeit( code, opts, done );

function done( error, results ) {
    if ( error ) {
        throw error;
    }
    console.dir( results );
}

To time an asynchronous snippet, set the asynchronous option to true.

var code = 'var x = Math.pow( Math.random(), 3 );';
code += 'if ( x !== x ) {';
code += 'var err = new Error( \'Something went wrong.\' );';
code += 'next( err );';
code += '}';
code += 'process.nextTick( next );';

var opts = {
    'iterations': 1e2,
    'asynchronous': true
};

timeit( code, opts, done );

function done( error, results ) {
    if ( error ) {
        throw error;
    }
    console.dir( results );
}

If asynchronous is true, the implementation assumes that before, after, and code snippets are all asynchronous. Accordingly, these snippets should invoke a next( [error] ) callback once complete. For example, given the following snippet,

setTimeout( done, 0 );

function done( error ) {
    if ( error ) {
        return next( error );
    }
    next();
}

the implementation wraps the snippet within a function having the following signature

function wrapped( state, next ) {
    setTimeout( done, 0 );

    function done( error ) {
        if ( error ) {
            return next( error );
        }
        next();
    }
}

The state parameter is simply an empty {} which allows the before, after, and code snippets to share state.

function before( state, next ) {
    state.counter = 0;
}

function code( state, next ) {
    setTimeout( done, 0 );

    function done( error ) {
        if ( error ) {
            return next( error );
        }
        state.counter += 1;
        next();
    }
}

function after( state, next ) {
    var err;
    if ( state.counter !== state.counter ) {
        err = new Error( 'Something went wrong!' );
        return next( err );
    }
    next();
}

Notes

  • Snippets always run in strict mode.
  • Always verify results. Doing so prevents the compiler from performing dead code elimination and other optimization techniques, which would render timing results meaningless.
  • Executed code is not sandboxed and has access to the global state. You are strongly advised against timing untrusted code. To time untrusted code, do so in an isolated environment (e.g., a separate process with restricted access to both global state and the host environment).
  • Wrapping asynchronous code does add overhead, but, in most cases, the overhead should be negligible compared to the execution cost of the timed snippet.
  • Ensure that, when asynchronous is true, the main code snippet is actually asynchronous. If a snippet releases the zalgo, an error complaining about exceeding the maximum call stack size is highly likely.
  • While many benchmark frameworks calculate various statistics over raw timing results (e.g., mean and standard deviation), do not do this. Instead, consider the fastest time an approximate lower bound for how fast an environment can execute a snippet. Slower times are more likely attributable to other processes interfering with timing accuracy rather than attributable to variability in JavaScript's speed. In which case, the minimum time is most likely the only result of interest. When considering all raw timing results, apply common sense rather than statistics.

Examples

var join = require( 'path' ).join;
var readFileSync = require( '@stdlib/fs-read-file' ).sync;
var timeit = require( '@stdlib/utils-timeit' );

var before = readFileSync( join( __dirname, 'examples', 'before.txt' ), 'utf8' );
var code = readFileSync( join( __dirname, 'examples', 'code.txt' ), 'utf8' );

var opts = {
    'iterations': 1e6,
    'repeats': 5,
    'before': before
};

timeit( code, opts, done );

function done( error, results ) {
    if ( error ) {
        throw error;
    }
    console.dir( results );
}

CLI

Installation

To use as a general utility, install the CLI package globally

npm install -g @stdlib/utils-timeit-cli

Usage

Usage: timeit [options] [<code>]

Options:

  -h,    --help                Print this message.
  -V,    --version             Print the package version.
         --iterations iter     Number of iterations.
         --repeats repeats     Number of repeats. Default: 3.
         --before setup        Setup code.
         --after cleanup       Cleanup code.
         --async               Time asynchronous code.
         --format fmt          Output format: pretty, csv, json. Default: pretty.

Notes

  • When the output format is csv, the output consists of only raw timing results.
  • If not explicitly provided --iterations, the implementation tries successive powers of 10 until the total time is at least 0.1 seconds.

Examples

$ timeit "$(cat ./examples/code.txt)" --before "$(cat ./examples/before.txt)" --iterations 1000000

iterations: 1000000
repeats: 3
iterations/s: 7261975.851461222
elapsed time: 0.13770357 sec
lower bound: 0.13770357 usec/iteration

To output results as JSON,

$ timeit "$(cat ./examples/code.txt)" --before "$(cat ./examples/before.txt)" --iterations 1000000 --format json
{"iterations":1000000,"repeats":3,"min":[0,132431806],"elapsed":0.132431806,"rate":7551056.1261997735,"times":[[0,142115140],[0,132431806],[0,134808376]]}

To output results as comma-separated values (CSV),

$ timeit "$(cat ./examples/code.txt)" --before "$(cat ./examples/before.txt)" --iterations 1000000 --format csv
seconds,nanoseconds
0,139365407
0,138033545
0,135175834

To use as part of a pipeline,

$ cat ./examples/code.txt | timeit --before "$(cat ./examples/before.txt)" --iterations 1000000

iterations: 1000000
repeats: 3
iterations/s: 7433536.674260073
elapsed time: 0.134525468 sec
lower bound: 0.134525468 usec/iteration

References


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

utils-timeit's People

Contributors

stdlib-bot avatar

Stargazers

 avatar

Watchers

 avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.