Giter Site home page Giter Site logo

micro's Introduction

MIRCO

PyTorch implementation for paper: Latent Structure Mining with Contrastive Modality Fusion for Multimedia Recommendation

Dependencies

  • Python 3.6
  • torch==1.5.0
  • scikit-learn==0.24.2
  • torch-scatter==2.0.8

Dataset Preparation

  • Download 5-core reviews data, meta data, and image features from Amazon product dataset. Put data into the directory data/meta-data/.

  • Install sentence-transformers and download pretrained models to extract textual features. Unzip pretrained model into the directory sentence-transformers/:

    ├─ data/: 
        ├── sports/
        	├── meta-data/
        		├── image_features_Sports_and_Outdoors.b
        		├── meta-Sports_and_Outdoors.json.gz
        		├── reviews_Sports_and_Outdoors_5.json.gz
        ├── sentence-transformers/
            	├── stsb-roberta-large
    
  • Run python build_data.py to preprocess data.

  • Run python cold_start.py to build cold-start data.

  • We provide processed data Baidu Yun (access code: m37q), Google Drive.

Usage

Start training and inference as:

cd codes
python main.py --dataset {DATASET}

For cold-start settings:

python main.py --dataset {DATASET} --core 0 --verbose 1 --lr 1e-5

Citation

If you want to use our codes in your research, please cite:

@article{MICRO21,
  title     = {Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation},
  author    = {Zhang, Jinghao and 
               Zhu, Yanqiao and 
               Liu, Qiang and
               Zhang, Mengqi and
               Wu, Shu and 
               Wang, Liang},
  journal = {arXiv.org},
  year={2021},
  eprint={2111.00678},
  archivePrefix={arXiv},
  primaryClass={cs.IR}
}

Acknowledgement

The structure of this code is largely based on LightGCN. Thank for their work.

micro's People

Contributors

jinghaoz avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.