Giter Site home page Giter Site logo

biometrics's Introduction

Fingerprint recognition algorithms

Active development year: 2012

Summary

Some implementations of fingerprint recognition algorithms developed for Biometric Methods course at University of Wrocław, Poland.

Usage

Prerequisites

  • python 2.7
  • python imaging library (PIL)

How to use it

Simply do python filename.py --help to figure out how to execute filename algorithm

Algorithms

Poincaré Index

Finds singular points on fingerprint.

How it works (more detailed description here):

  • divide image into blocks of block_size
  • for each block:
    • calculate orientation of the fingerprint ridge in that block (i.e. what is the rigde slope / angle between a ridge and horizon)
    • sum up the differences of angles (orientations) of the surrounding blocks
    • there are 4 cases:
      • sum is 180 (+- tolerance) - loop found
      • sum is -180 (+- tolerance) - delta found
      • sum is 360 (+- tolerance) - whorl found

The python script will mark the singularities with circles:

  • red for loop
  • green for delta
  • blue for whorl

Example: python poincare.py images/ppf1.png 16 1 --smooth

Images:

  • Original

fingerprint

  • With singular points marked by algorithm:

poincare

Note: algorithm marked singular points not only inside fingerprint itself, but on its edges and even outside. This is a result of usage of non-preprocessed image - if the image was enhanced (better contrast, background removed), then only singular points inside fingerprint would be marked.

Thinning (skeletonization)

How it [works] (http://bme.med.upatras.gr/improc/Morphological%20operators.htm#Thining)

Example: python thining.py images/ppf1_enhanced.gif --save

Images:

  • Before

before

  • After:

after

Minutiae recognition (crossing number method)

Crossing number methods is a really simple way to detect ridge endings and ridge bifurcations.

First, you'll need thinned (skeleton) image (refer to previous section how to get it). Then the crossing number algorithm will look at 3x3 pixel blocks:

  • if middle pixel is black (represents ridge):
    • if pixel on boundary are crossed with the ridge once, then we've found ridge ending
    • if pixel on boundary are crossed with the ridge three times, then we've found ridge bifurcation

Example: python crossing_number.py images/ppf1_enhanced_thinned.gif --save

minutiae

biometrics's People

Contributors

przemekpastuszka avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.