Giter Site home page Giter Site logo

yogabharathi3 / -implementation-of-logistic-regression-using-gradient-descent Goto Github PK

View Code? Open in Web Editor NEW

This project forked from akilamohan/-implementation-of-logistic-regression-using-gradient-descent

0.0 0.0 0.0 5 KB

License: BSD 3-Clause "New" or "Revised" License

-implementation-of-logistic-regression-using-gradient-descent's Introduction

Implementation-of-Logistic-Regression-Using-Gradient-Descent

AIM:

To write a program to implement the the Logistic Regression Using Gradient Descent.

Equipments Required:

  1. Hardware โ€“ PCs
  2. Anaconda โ€“ Python 3.7 Installation / Jupyter notebook

Algorithm

STEP 1 :

Use the standard libraries in python for finding linear regression.

STEP 2 :

Set variables for assigning dataset values.

STEP 3 :

Import linear regression from sklearn.

STEP 4:

Predict the values of array.

STEP 5:

Calculate the accuracy, confusion and classification report by importing the required modules from sklearn.

STEP 6 :

Obtain the graph.

Program:

/*
Program to implement the the Logistic Regression Using Gradient Descent.
Developed by:Yogabharathi S 
RegisterNumber:212222230179  
*/
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

df=np.loadtxt("/content/ex2data1.txt",delimiter=',')
X=df[:,[0,1]]
y=df[:,2]

X[:5]

y[:5]

plt.figure()
plt.scatter(X[y==1][:,0],X[y==1][:,1],label="Admitted")
plt.scatter(X[y==0][:,0],X[y==0][:,1],label="Not Admitted")
plt.xlabel("Exam 1 score")
plt.ylabel("Exam 2 score")
plt.show()

def sigmoid(z):
  return 1/(1+np.exp(-z))

plt.plot()
X_plot = np.linspace(-10,10,100)
plt.plot(X_plot,sigmoid(X_plot))
plt.show()

def costFunction(theta,X,y):
  h=sigmoid(np.dot(X,theta))
  J=-(np.dot(y,np.log(h)) + np.dot(1-y,np.log(1-h))) / X.shape[0]
  grad=np.dot(X.T,h-y)/X.shape[0]
  return J,grad

X_train = np.hstack((np.ones((X.shape[0],1)),X))
theta=np.array([0,0,0])
J,grad=costFunction(theta,X_train,y)
print(J)
print(grad)

X_train = np.hstack((np.ones((X.shape[0],1)),X))
theta=np.array([-24,0.2,0.2])
J,grad=costFunction(theta,X_train,y)
print(J)
print(grad)

def cost(theta,X,y):
  h=sigmoid(np.dot(X,theta))
  J=-(np.dot(y,np.log(h))+np.dot(1-y,np.log(1-h))) / X.shape[0]
  return J

def gradient(theta,X,y):
  h=sigmoid(np.dot(X,theta))
  grad=np.dot(X.T,h-y) / X.shape[0]
  return grad

X_train = np.hstack((np.ones((X.shape[0],1)),X))
theta = np.array([0,0,0])
res = optimize.minimize(fun=cost,x0=theta,args=(X_train,y),
                        method='Newton-CG',jac=gradient)
print(res.fun)
print(res.x)

def plotDecisionBoundary(theta,X,y):
  x_min,x_max=X[:,0].min() - 1,X[:,0].max()+1
  y_min,y_max=X[:,1].min() - 1,X[:,0].max()+1
  xx,yy=np.meshgrid(np.arange(x_min,x_max,0.1),
                    np.arange(y_min,y_max,0.1))

  X_plot = np.c_[xx.ravel(),yy.ravel()]
  X_plot = np.hstack((np.ones((X_plot.shape[0],1)),X_plot))
  y_plot = np.dot(X_plot,theta).reshape(xx.shape)

  plt.figure()
  plt.scatter(X[y==1][:,0],X[y==1][:,1],label='admitted')
  plt.scatter(X[y==0][:,0],X[y==0][:,1],label='NOT admitted')
  plt.contour(xx,yy,y_plot,levels=[0])
  plt.xlabel("Exam 1 score")
  plt.ylabel("Exam 2 score")
  plt.legend()
  plt.show()

plotDecisionBoundary(res.x,X,y)

prob = sigmoid(np.dot(np.array([1,45,85]),res.x))
print(prob)

def predict(theta,X):
  X_train = np.hstack((np.ones((X.shape[0],1)),X))
  prob = sigmoid(np.dot(X_train,theta))
  return (prob>=0.5).astype(int)

np.mean(predict(res.x,X)==y)

Output:

Array Value of x :

image

Array Value of y :

image

Exam 1 - score graph :

image

Sigmoid function graph :

image

X_train_grad value :

image

Y_train_grad value :

image

Print res.x :

image

Decision boundary - graph for exam score :

image

Proability value :

image

Prediction value of mean :

image

Result:

Thus the program to implement the the Logistic Regression Using Gradient Descent is written and verified using python programming.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.