Giter Site home page Giter Site logo

sparsegaussianprocesses.jl's Introduction

SparseGaussianProcesses.jl

┌───────────────────┐
│⢰⢦⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⢀⣴⣶⢄⠀⠀⠀⠀⠀⠀⠀⠀│
│⢨⣿⣷⣻⣵⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⣠⣾⣿⣿⣿⡆⠀⠀⠀⠀⠀⠀⠀│
│⠨⡿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⣼⣿⣿⠿⣿⣾⣿⡀⠀⠀⠀⠀⠀⠀│
│⠸⠋⠑⢿⣿⣿⡆⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⡟⠉⠺⣻⣿⣧⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠹⣿⣿⡀⠀⠀⠀⠀⠀⠀⣼⣿⣿⠝⠀⠀⠀⠈⢿⣿⡆⠀⠀⠀⠀⠀│
│⠉⠉⠉⠉⠉⢻⣿⣯⠉⠉⠉⠉⠉⣹⣿⣿⠏⠉⠉⠉⠉⠉⠉⣿⣿⣍⡉⠉⠉⠉│
│⠀⠀⠀⠀⠀⠀⢿⣿⡆⠀⠀⢀⣮⣿⣿⡏⠀⠀⠀⠀⠀⠀⠀⠸⣿⣏⢟⡄⡜⠀│
│⠀⠀⠀⠀⠀⠀⠈⢿⣿⣦⣶⣫⣿⣿⡏⡇⠀⠀⠀⠀⠀⠀⠀⠀⠹⣿⣯⣫⣦⠂│
│⠀⠀⠀⠀⠀⠀⠀⠘⢿⣿⣿⣿⡿⡟⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⣿⣿⣿⡄│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠾⠿⠏⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⢿⠿⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⠀│
└───────────────────┘

This package implements sparse Gaussian processes models using doubly stochastic variational inference.

Unlike essentially all other Gaussian process packages, SparseGaussianProcesses.jl does not work with means and covariances. Instead, it uses the path-wise sampling technique to implement entire function draws from Gaussian process posteriors, which can be evaluated deterministically at arbitrary locations once sampled.

It supports models of the form

(f | u)(.) = (Ag)(.) + K_{(.)z} (K_{zz} + \Lambda)^{-1} (u - (Bg)(z) - \epsilon)

where g ~ GP(0, k), u ~ N(\mu, \Sigma), \epsilon ~ N(0, \Lambda), and A, B are inter-domain operators such as the identity, gradient, or convolutional patch map. This little-known formula defines a Gaussian process with precisely the correct mean and variance of a standard sparse Gaussian process.

Features

The following features are planned for this package.

  • Evaluation of entire function draws at arbitrary locations.
  • Posterior sample paths are fully differentiable, assuming a sufficiently smooth kernel.
  • Strong inter-domain support, including gradient and convolutional Gaussian processes.
  • Fully supports training on GPU.
  • Strong support for vector-valued processes.
  • Strong support for non-Euclidean domains.

Examples

A set of examples are available in the examples/ folder.

Contributing

This package is under development, and contributions are welcome! The best way to get in touch regarding development is on the Julia slack.

Citing

@article{wilson20,
	Author = {James T. Wilson and Viacheslav Borovitskiy and Alexander Terenin and Peter Mostowski and Marc Peter Deisenroth},
	Journal = {arXiv:2002.09309},
	Title = {Efficiently sampling functions from Gaussian process posteriors},
	Year = {2020}}

sparsegaussianprocesses.jl's People

Contributors

aterenin avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar

sparsegaussianprocesses.jl's Issues

sine.jl doesn't work

I tried sine.jl, but it doesn't work.

gp was not defined in line 6,

gp = SparseGaussianProcess(SquaredExponentialKernel(1), inducing_points = PseudoDataInducingPoints(gp.kernel, 10))

Because I'm a beginner for Julia, I'm not sure about your code.
Thank you.

Depreciation of CuArrays prevents installation

Hi,

I'd love to use this implementation for a project, but I'm having some trouble with installation. I believe it's because the old version of Flux uses CuArrays (instead of CUDA like the new versions) and so it can't be installed. Unfortunately I'm not sure I know how to fix the problem, sorry!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.