Giter Site home page Giter Site logo

omnipathr's Introduction

OmnipathR

Utility functions to work with OmniPath in R.

Description

OmnipathR is an R package built to provide easy access to the data stored in the OmniPath webservice:

https://omnipathdb.org/

The webservice implements a very simple REST style API. This package make requests by the HTTP protocol to retreive the data. Hence, fast Internet access is required for a proper use of OmnipathR.

The package also provides some utility functions to filter, analyse and visualize the data.

Query types

We provide here a brief summary about the data available through OmnipathR. OmnipathR provides access to 5 types of queries:

  1. Interactions: protein-protein interactions from different datasets.
  2. Enzyme-substrate: enzyme-PTM (post-translational modification) relationships.
  3. Complexes: comprehensive database of more than 22000 protein complexes.
  4. Annotations: large variety of data about proteins and complexes features.
  5. Intercell: information on the roles in inter-cellular signaling.

For a more detailed information, we recommend you to visit the following sites:

https://omnipathdb.org/

https://omnipathdb.org/info

https://github.com/saezlab/pypath/blob/master/webservice.rst

https://saezlab.github.io/OmnipathR/articles/OmnipathMainVignette.html

Installation

First of all, you need a current version of R (https://r-project.org). OmnipathR is a freely available package deposited on Bioconductor and Github: (https://bioconductor.org/, https://github.com/saezlab/OmnipathR).

You can install it by running the following commands on a R console:

if (!requireNamespace('BiocManager', quietly = TRUE))
    install.packages('BiocManager')

## Last release in Bioconductor
BiocManager::install('OmnipathR', version = '3.12')
## Development version with the lastest updates
BiocManager::install('OmnipathR', version = 'devel')

Sometimes it's easier to install directly from github:

require(devtools)
install_github('saezlab/OmnipathR')

Getting started and some usage examples

To get started, we strongly recommend to read our main vignette in order to deal with the different types of queries and handle the data they return:

https://saezlab.github.io/OmnipathR/articles/OmnipathMainVignette.html

You can also check the manual:

https://saezlab.github.io/OmnipathR/reference/index.html

In addition, we provide here some examples for a quick start:

library(OmnipathR)

Download human protein-protein interactions from the specified resources:

interactions <- import_omnipath_interactions(
    resources = c('SignaLink3', 'PhosphoSite', 'SIGNOR')
)

Download human enzyme-PTM relationships from the specified resources:

enzsub <- import_omnipath_enzsub(resources = c('PhosphoSite', 'SIGNOR'))

Convert both data frames into networks (igraph objects)

ptms_g = ptms_graph(ptms = enzsub)
OPI_g = interaction_graph(interactions = interactions)

Print some interactions in a nice format:

print_interactions(head(interactions))

          source interaction         target n_resources n_references
4    SRC (P12931)  ==( + )==> TRPV1 (Q8NER1)           9            6
2  PRKG1 (Q13976)  ==( - )==> TRPC6 (Q9Y210)           7            5
1  PRKG1 (Q13976)  ==( - )==> TRPC3 (Q13507)           9            2
5    LYN (P07948)  ==( + )==> TRPV4 (Q9HBA0)           9            2
6  PTPN1 (P18031)  ==( - )==> TRPV6 (Q9H1D0)           3            2
3 PRKACA (P17612)  ==( + )==> TRPV1 (Q8NER1)           6            1

Find interactions between a specific kinase and a specific substrate:

print_interactions(dplyr::filter(enzsub,enzyme_genesymbol=='MAP2K1',
  substrate_genesymbol=='MAPK3'))

           enzyme interaction           substrate    modification n_resources
1 MAP2K1 (Q02750)       ====> MAPK3_Y204 (P27361) phosphorylation           8
2 MAP2K1 (Q02750)       ====> MAPK3_T202 (P27361) phosphorylation           8
3 MAP2K1 (Q02750)       ====> MAPK3_Y210 (P27361) phosphorylation           2
4 MAP2K1 (Q02750)       ====> MAPK3_T207 (P27361) phosphorylation           2

Find shortest paths on the directed network between proteins:

print_path_es(shortest_paths(OPI_g,from = 'TYRO3',to = 'STAT3',
    output = 'epath')$epath[[1]],OPI_g)

           source interaction          target n_resources n_references
1  TYRO3 (Q06418)  ==( ? )==>   AKT1 (P31749)           2            0
2   AKT1 (P31749)  ==( - )==> DAB2IP (Q5VWQ8)           3            1
3 DAB2IP (Q5VWQ8)  ==( - )==>  STAT3 (P40763)           1            1

Find all shortest paths between proteins:

print_path_vs(all_shortest_paths(OPI_g,from = 'DYRK2',to = 'MAPKAPK2')$res,OPI_g)
Pathway 1: DYRK2 -> TBK1 -> NFKB1 -> MAP3K8 -> MAPK3 -> MAPKAPK2
Pathway 2: DYRK2 -> TBK1 -> AKT3 -> MAP3K8 -> MAPK3 -> MAPKAPK2
Pathway 3: DYRK2 -> TBK1 -> AKT2 -> MAP3K8 -> MAPK3 -> MAPKAPK2
Pathway 4: DYRK2 -> TBK1 -> AKT1 -> MAP3K8 -> MAPK3 -> MAPKAPK2
Pathway 5: DYRK2 -> TBK1 -> AKT3 -> PEA15 -> MAPK3 -> MAPKAPK2
Pathway 6: DYRK2 -> TBK1 -> AKT2 -> PEA15 -> MAPK3 -> MAPKAPK2
.....

Alternatives

Python

A similar web service client is available for Python:

<https://github.com/saezlab/omnipath>

Cytoscape

The OmniPath Cytoscape app provides access to the interactions, enzyme-PTM relationships and some of the annotations:

<https://apps.cytoscape.org/apps/omnipath>

Customization

The pypath Python module is a tool for building the OmniPath databases in a fully customizable way. We recommend to use pypath if you want to:

  • Tailor the database building to your needs
  • Include resources not available in the public web service
  • Use the rich Python APIs available for the database objects
  • Make sure the data from the original sources is the most up-to-date
  • Use the methods in pypath.inputs to download data from resources
  • Use the various extra tools in pypath.utils, e.g. for identifier translation, homology translation, querying Gene Ontology, working with protein sequences, processing BioPAX, etc.

With pypath it's also possible to run your own web service and serve your custom databases to the OmnipathR R client and the omnipath Python cient.

Feedbacks, bug reports, features

Feedbacks and bugreports are always very welcome!

Please use the Github issue page to report bugs or for questions:

https://github.com/saezlab/OmnipathR/issues

Many thanks for using OmnipathR!

omnipathr's People

Contributors

alberto-valdeolivas avatar christianholland avatar deeenes avatar gabora avatar hallba avatar nturaga avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.