Giter Site home page Giter Site logo

jiahuaqu / analyze_cytof_using_seurat Goto Github PK

View Code? Open in Web Editor NEW

This project forked from praneet1988/analyze_cytof_using_seurat

0.0 0.0 0.0 5.77 MB

Cytometry by time-of-flight(CyTOF) data is very useful in studying the presence/absence of antigens/surface markers at single cell level. There are multiple tools to analyze CyTOF data but here I am presenting a tutorial of how one can quickly use Seurat (R package for scRNA-Seq analysis) for analyzing CyTOF data and understand the cellular and phenotypic diversity

License: GNU General Public License v3.0

analyze_cytof_using_seurat's Introduction

Analyze CyTOF Using Seurat

Cytometry by time-of-flight(CyTOF) data is very useful in studying the presence/absence of antigens/surface markers at single cell level. There are multiple tools to analyze CyTOF data but here I am presenting a tutorial of how one can quickly use Seurat (R package for scRNA-Seq analysis) [https://satijalab.org/seurat/] for analyzing CyTOF data and understanding the cellular and phenotypic diversity at cellular level.

There are five major steps:

Step1: Reading .fcs files using read.flowSet function from flowCore R package

Step2: Using Arcsinh transformation to normalize the fcs files. Read more [https://support.cytobank.org/hc/en-us/articles/206148057-About-the-Arcsinh-transform]

Step3: Create a Seurat Object using normalized counts from .fcs files

Step4: Run Dimensionality reduction, clustering and then visualize cells

Step5: Integrate Seurat objects to understand similarities and differences among cell-types learnt from each .fcs file

R packages required

Step1: Reading .fcs files using read.flowSet function from flowCore R package

Let's read the .fcs files using read.flowSet. [Here I am showing analysis tutorial for 2 fcs samples]

fcs_raw1 <- read.flowSet('fcs_raw1.fcs', path = getwd(), transformation = FALSE, truncate_max_range = FALSE)

fcs_raw2 <- read.flowSet('fcs_raw2.fcs', path = getwd(), transformation = FALSE, truncate_max_range = FALSE)

Let's read the panel file which provides information on the markers

panel_filename <- "CyTOF_panel.xlsx"

panel <- read_excel(panel_filename)

panel$Antigen <- gsub("/", "_", panel$Antigen)

panel$Antigen <- gsub("-", "_", panel$Antigen)

panel_fcs_raw1 <- pData(parameters(fcs_raw1[[1]]))

panel_fcs_raw2 <- pData(parameters(fcs_raw2[[1]]))

panel_fcs_raw1$desc <- gsub("/", "_", panel_fcs_raw1$desc)

panel_fcs_raw1$desc <- gsub("-", "_", panel_fcs_raw1$desc)

panel_fcs_raw2$desc <- gsub("/", "_", panel_fcs_raw2$desc)

panel_fcs_raw2$desc <- gsub("-", "_", panel_fcs_raw2$desc)

(lineage_markers <- panel$Antigen[panel$Lineage == 1])

(functional_markers <- panel$Antigen[panel$SurfaceMarkers == 1])

Step2: Using Arcsinh transformation to normalize the fcs files

Let's perform the Arcsinh transformation for fcs_raw_1 and fcs_raw_2

fcs_1 <- fsApply(fcs_raw1, function(x, cofactor = 5){

colnames(x) <- panel_fcs_raw1$desc

expr <- exprs(x)

expr <- asinh(expr[, c(panel_fcs_raw1$desc)] / cofactor)

exprs(x) <- expr

x

})

fcs_1

fcs_2 <- fsApply(fcs_raw2, function(x, cofactor = 5){

colnames(x) <- panel_fcs_raw2$desc

expr <- exprs(x)

expr <- asinh(expr[, c(panel_fcs_raw2$desc)] / cofactor)

exprs(x) <- expr

x

})

fcs_2

Create Seurat Object using normalized expression from fcs files

Let's create Seurat objects for two fcs samples:

Seurat Object for first fcs sample

expr_fcs_1 <- fsApply(fcs_1, exprs)

expr_fcs_1 <- as.matrix(t(expr_fcs_1))

Cells <- c()

SampleName <- c()

TimePoint <- c()

for (f in 1:ncol(expr_fcs_1))

{

a <- paste("sample_",f, sep="")

Cells <- c(Cells,a)

a <- paste("sample")

SampleName <- c(SampleName, a)

a <- paste("time")

TimePoint <- c(TimePoint, a)

}

colnames(expr_fcs_1) <- Cells

metadata <- cbind(Cells, SampleName, TimePoint)

metadata <- data.frame(metadata)

pd <- new("AnnotatedDataFrame", data = metadata)

rownames(pd) <- pd$Cells

Obj_fcs_1 <- CreateSeuratObject(expr_fcs_1)

CellsMeta = [email protected]

CellsMeta["SampleName"] <- pd$SampleName

CellsMetaTrim <- subset(CellsMeta, select = c("SampleName"))

Obj_fcs_1 <- AddMetaData(Obj_fcs_1, CellsMetaTrim)

CellsMeta = [email protected]

CellsMeta["TimePoint"] <- pd$TimePoint

CellsMetaTrim <- subset(CellsMeta, select = c("TimePoint"))

Obj_fcs_1 <- AddMetaData(Obj_fcs_1, CellsMetaTrim)

Seurat Object for second fcs sample

expr_fcs_2 <- fsApply(fcs_2, exprs)

expr_fcs_2 <- as.matrix(t(expr_fcs_2))

Cells <- c()

SampleName <- c()

TimePoint <- c()

for (f in 1:ncol(expr_fcs_2))

{

a <- paste("sample_",f, sep="")

Cells <- c(Cells,a)

a <- paste("sample")

SampleName <- c(SampleName, a)

a <- paste("time")

TimePoint <- c(TimePoint, a)

}

colnames(expr_fcs_2) <- Cells

metadata <- cbind(Cells, SampleName, TimePoint)

metadata <- data.frame(metadata)

pd <- new("AnnotatedDataFrame", data = metadata)

rownames(pd) <- pd$Cells

Obj_fcs_2 <- CreateSeuratObject(expr_fcs_2)

CellsMeta = [email protected]

CellsMeta["SampleName"] <- pd$SampleName

CellsMetaTrim <- subset(CellsMeta, select = c("SampleName"))

Obj_fcs_2 <- AddMetaData(Obj_fcs_2, CellsMetaTrim)

CellsMeta = [email protected]

CellsMeta["TimePoint"] <- pd$TimePoint

CellsMetaTrim <- subset(CellsMeta, select = c("TimePoint"))

Obj_fcs_2 <- AddMetaData(Obj_fcs_2, CellsMetaTrim)

Step4: Variable feature selection, dimension reduction, clustering and visualization

For Obj_fcs_1

VariableFeatures(Obj_fcs_1) <- rownames(Obj_fcs_1)

Obj_fcs_1 <- ScaleData(Obj_fcs_1)

Obj_fcs_1 <- RunPCA(Obj_fcs_1, verbose = TRUE)

Obj_fcs_1 <- FindNeighbors(Obj_fcs_1, dims = 1:10, verbose = TRUE)

Obj_fcs_1 <- FindClusters(Obj_fcs_1, verbose = TRUE)

Obj_fcs_1 <- RunUMAP(Obj_fcs_1, dims = 1:10, verbose = TRUE)

Obj_fcs_1 <- RunTSNE(Obj_fcs_1, dims = 1:10, verbose = TRUE)

DimPlot(Obj_fcs_1, reduction="umap", pt.size=1)

DimPlot(Obj_fcs_1, reduction="tsne", pt.size=1)

For Obj_fcs_2

VariableFeatures(Obj_fcs_2) <- rownames(Obj_fcs_2)

Obj_fcs_2 <- ScaleData(Obj_fcs_2)

Obj_fcs_2 <- RunPCA(Obj_fcs_2, verbose = TRUE)

Obj_fcs_2 <- FindNeighbors(Obj_fcs_2, dims = 1:10, verbose = TRUE)

Obj_fcs_2 <- FindClusters(Obj_fcs_2, verbose = TRUE)

Obj_fcs_2 <- RunUMAP(Obj_fcs_2, dims = 1:10, verbose = TRUE)

Obj_fcs_2 <- RunTSNE(Obj_fcs_2, dims = 1:10, verbose = TRUE)

DimPlot(Obj_fcs_2, reduction="umap", pt.size=1)

DimPlot(Obj_fcs_2, reduction="tsne", pt.size=1)

Step5: Integration of Obj_fcs_1 and Obj_fcs_2 to uncover similarities and differences among cell types from each sample

Integration.anchors <- FindIntegrationAnchors(object.list = list(Obj_fcs_1, Obj_fcs_2), dims = 1:20)

Integration.combined <- IntegrateData(anchorset = Integration.anchors, dims = 1:20)

DefaultAssay(Integration.combined) <- "integrated"

Integration.combined <- ScaleData(Integration.combined)

Integration.combined <- RunPCA(Integration.combined, verbose = TRUE)

Integration.combined <- RunUMAP(Integration.combined, reduction = "pca", dims = 1:10)

Integration.combined <- RunTSNE(Integration.combined, reduction = "pca", dims = 1:10)

Integration.combined <- FindNeighbors(Integration.combined, reduction = "pca", dims = 1:10)

Integration.combined <- FindClusters(Integration.combined, resolution = 0.5)

DimPlot(Integration.combined, pt.size=1)

UMAP Plot after integration (Please Note this is example plot)

Graph

All the steps here are based on the analysis for determining cell types from CyTOF data and if you are using these steps then please change parameters accordingly

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.