Giter Site home page Giter Site logo

funnelact's People

Contributors

megvii-model avatar nmaac avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

funnelact's Issues

Funnel Activation implementation question

Hi,

The depthwise convolution you're using in your implementation of FRelu is this
the regular depthwise convolution or a depthwise separable convolution ? (a regular depthwise conv + 1x1 pointwise conv)

thanks

Is there any special consideration of initialization ?

Hi,

Since we use kaiming_normal to initialize conv layers followed by relu, and xavier to initiailize linear conv layers. Is there any specification to normalize the conv layers when using FReLU. Besides, there is a conv layer within the FReLU module, how could I initialize this embedded conv layer?

Difference between Parametric Pooling and Depthwise (Separable) Conv?

Thank you for your splendid work. I really enjoyed your paper.
But, I'm little bit confused about some parts.
My questinons are below.

  1. What are you referring to by the term "Depthwise Separable Convolution"?
    Although you are using term "Depthwise Separable Convolution" repeatedly in your paper,
    you are using "Depthwise Convolution" in your implementation, not Depthwise "Separable" Convolution.
    From my understanding, "Depthwise Separable Convolution" means "Depthwise Conv. + Pointwise Conv."(Xception paper) and, in your case, you seem to use only "Depthwise Conv." Am I missing something here?

depthwise separable conv(§1.2)
Image from §1.2 in your paper

  1. What is the difference between ParamPool(·) and DW(·) in table 5?
    I thought ParamPool is the same as Depthwise Conv. but you are using ParamPool and DW differently in your paper. So, what is the difference between them?

Table5
Image from Table 5 in your paper

Thanks in advance!
Sincerely.

应用到cifar-10小型数据集

感谢您为我的问题挤出时间来帮我解决,我表示由衷的感谢!
在tensorflow框架下,我将您的代码放入到resnet vgg-16 NIN模型中来对cifar-10数据集进行分类,发现训练的时候损失为nan以及验证集准确率一直为0.1。请问您知道是什么原因吗?下面这是我的tensorflow代码
channels = inputs.get_shape().as_list()[-1] scales1 = Conv2D(channels,kernel_size=3, strides=1, padding="same")(inputs) scales1 = BatchNormalization()(scales1) return tf.maximum(inputs,scales1)

Apply FReLU to MobileNetV3

I reimplemented FReLU in PyTorch, and apply it on MobileNetV3 by replacing all the hswish with frelu. The ImageNet accuracy is as follow:

model top1
mobilenetv3+hswish 75.2%
mobilenetv3+frelu 74.8%

My code:

class FReLU(nn.Module):
    def __init__(self, in_channels, inplace: bool = False):
        super(FReLU, self).__init__()
        self.inplace = inplace
        self.conv_frelu = nn.Conv2d(in_channels, in_channels, 3, 1, 1, groups=in_channels, bias=False)
        self.bn_frelu = nn.BatchNorm2d(in_channels)

    def forward(self, x):
        x1 = self.conv_frelu(x)
        x1 = self.bn_frelu(x1)
        x = torch.max(x, x1)
        return x

Am I missing something important? As for the gaussian initialization in FReLU, what's the std?

base_width报错

@nmaac @megvii-model 作者求问,这个报错是怎么回事,定义class的时候除了添加我自己设计的网络参数,base_width这个参数都是照着repo给的位置加上去的,对照了一遍并没有哪个地方多加。在此先感谢!

File "D:\Github_code\Wujie\models\pyconv.py", line 389, in pyconvresnet50
model = PyConvResNet(PyConvBottleneck, [3, 4, 6, 3], **kwargs)
File "D:\Github_code\Wujie\models\pyconv.py", line 265, in init
self.layer1 = self._make_layer(block, 64, layers[0], stride=2, norm=norm, pyconv_kernels=[3, 5, 7, 9], pyconv_groups=[1, 4, 8, 16])
File "D:\Github_code\Wujie\models\pyconv.py", line 318, in _make_layer
layers.append(block(self.inplanes, planes, stride, norm, dilation=previous_dilation, norm=norm,pyconv_kernels=pyconv_kernels, pyconv_groups=pyconv_groups, base_width=self.base_width))
TypeError: init() got multiple values for argument 'base_width'

Apply FReLU to YOLOv5

Thank you for your great contributions! In YOLOv5 we skipped over using Swish or Mish due to their expensive nature, especially during training, and retained the same LeakyReLU(0.1) as YOLOv3. We have a PR for the addition of FReLU
ultralytics/yolov5#556 as this. Is this a correct implementation? Should we use torch.max() or torch.maximum()?

# FReLU https://arxiv.org/abs/2007.11824 --------------------------------------
class FReLU(nn.Module):
    def __init__(self, c1, k=3):  # ch_in, kernel
        super().__init()__()
        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1)
        self.bn = nn.BatchNorm2d(c1)

    @staticmethod
    def forward(self, x):
        return torch.maximum(x, self.bn(self.conv(x)))

Secondly, I saw you recommended using FReLU only in the backbone of a detection network. So would you recommend replacing all of our LeakyReLU(0.1) activations in the backbone with FReLU() to start, and then doing the same with the head activations if we see positive results? Our main model structure is here:

https://github.com/ultralytics/yolov5/blob/master/models/yolov5s.yaml

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

Thank you in advance in advance for your time and any recommendations for our situation!

Strategies to avoid overfitting

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import (ConvModule, build_conv_layer, build_norm_layer,
                      constant_init, kaiming_init)
from mmcv.utils.parrots_wrapper import _BatchNorm

from ..builder import BACKBONES
from .base_backbone import BaseBackbone

class FRelu(nn.Module):
    
    def __init__(self, in_channels):
        super(FRelu, self).__init__()
        self.conv_frelu = nn.Conv2d(in_channels, in_channels,
            3, 1, 1, groups=in_channels)
        self.bn_frelu = nn.BatchNorm2d(in_channels)

    def forward(self, x):
        x1 = self.conv_frelu(x)
        x1 = self.bn_frelu(x1)
        return torch.max(x, x1)

class BasicBlock(nn.Module):
    """BasicBlock for ResNet.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int): The ratio of ``out_channels/mid_channels`` where
            ``mid_channels`` is the output channels of conv1. This is a
            reserved argument in BasicBlock and should always be 1. Default: 1.
        stride (int): stride of the block. Default: 1
        dilation (int): dilation of convolution. Default: 1
        downsample (nn.Module): downsample operation on identity branch.
            Default: None.
        style (str): `pytorch` or `caffe`. It is unused and reserved for
            unified API with Bottleneck.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        conv_cfg (dict): dictionary to construct and config conv layer.
            Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=1,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN')):
        super(BasicBlock, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert self.expansion == 1
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            norm_cfg, out_channels, postfix=2)

        self.conv1 = build_conv_layer(
            conv_cfg,
            in_channels,
            self.mid_channels,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            out_channels,
            3,
            padding=1,
            bias=False)
        self.add_module(self.norm2_name, norm2)

        # self.relu = nn.ReLU(inplace=True)
        self.frelu1 = FRelu(self.mid_channels)
        self.frelu2 = FRelu(out_channels)
        self.downsample = downsample

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.frelu1(out)

            out = self.conv2(out)
            out = self.norm2(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.frelu2(out)

        return out


class Bottleneck(nn.Module):
    """Bottleneck block for ResNet.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int): The ratio of ``out_channels/mid_channels`` where
            ``mid_channels`` is the input/output channels of conv2. Default: 4.
        stride (int): stride of the block. Default: 1
        dilation (int): dilation of convolution. Default: 1
        downsample (nn.Module): downsample operation on identity branch.
            Default: None.
        style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the
            stride-two layer is the 3x3 conv layer, otherwise the stride-two
            layer is the first 1x1 conv layer. Default: "pytorch".
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        conv_cfg (dict): dictionary to construct and config conv layer.
            Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=4,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN')):
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, out_channels, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            in_channels,
            self.mid_channels,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            self.mid_channels,
            kernel_size=3,
            stride=self.conv2_stride,
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            out_channels,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        # self.relu = nn.ReLU(inplace=True)
        self.frelu1 = FRelu(self.mid_channels)
        self.frelu2 = FRelu(self.mid_channels)
        self.frelu3 = FRelu(out_channels)
        self.downsample = downsample

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

    @property
    def norm3(self):
        return getattr(self, self.norm3_name)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.frelu1(out)

            out = self.conv2(out)
            out = self.norm2(out)
            out = self.frelu2(out)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.frelu3(out)

        return out


def get_expansion(block, expansion=None):
    """Get the expansion of a residual block.

    The block expansion will be obtained by the following order:

    1. If ``expansion`` is given, just return it.
    2. If ``block`` has the attribute ``expansion``, then return
       ``block.expansion``.
    3. Return the default value according the the block type:
       1 for ``BasicBlock`` and 4 for ``Bottleneck``.

    Args:
        block (class): The block class.
        expansion (int | None): The given expansion ratio.

    Returns:
        int: The expansion of the block.
    """
    if isinstance(expansion, int):
        assert expansion > 0
    elif expansion is None:
        if hasattr(block, 'expansion'):
            expansion = block.expansion
        elif issubclass(block, BasicBlock):
            expansion = 1
        elif issubclass(block, Bottleneck):
            expansion = 4
        else:
            raise TypeError(f'expansion is not specified for {block.__name__}')
    else:
        raise TypeError('expansion must be an integer or None')

    return expansion


class ResLayer(nn.Sequential):
    """ResLayer to build ResNet style backbone.

    Args:
        block (nn.Module): Residual block used to build ResLayer.
        num_blocks (int): Number of blocks.
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int, optional): The expansion for BasicBlock/Bottleneck.
            If not specified, it will firstly be obtained via
            ``block.expansion``. If the block has no attribute "expansion",
            the following default values will be used: 1 for BasicBlock and
            4 for Bottleneck. Default: None.
        stride (int): stride of the first block. Default: 1.
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False
        conv_cfg (dict): dictionary to construct and config conv layer.
            Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 block,
                 num_blocks,
                 in_channels,
                 out_channels,
                 expansion=None,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 **kwargs):
        self.block = block
        self.expansion = get_expansion(block, expansion)

        downsample = None
        if stride != 1 or in_channels != out_channels:
            downsample = []
            conv_stride = stride
            if avg_down and stride != 1:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(
                        kernel_size=stride,
                        stride=stride,
                        ceil_mode=True,
                        count_include_pad=False))
            downsample.extend([
                build_conv_layer(
                    conv_cfg,
                    in_channels,
                    out_channels,
                    kernel_size=1,
                    stride=conv_stride,
                    bias=False),
                build_norm_layer(norm_cfg, out_channels)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        layers.append(
            block(
                in_channels=in_channels,
                out_channels=out_channels,
                expansion=self.expansion,
                stride=stride,
                downsample=downsample,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                **kwargs))
        in_channels = out_channels
        for i in range(1, num_blocks):
            layers.append(
                block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    expansion=self.expansion,
                    stride=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
        super(ResLayer, self).__init__(*layers)


@BACKBONES.register_module()
class ResNet_FRelu(BaseBackbone):
    """ResNet_FRelu backbone.

    Args:
        depth (int): Network depth, from {18, 34, 50, 101, 152}.
        in_channels (int): Number of input image channels. Default: 3.
        stem_channels (int): Output channels of the stem layer. Default: 64.
        base_channels (int): Middle channels of the first stage. Default: 64.
        num_stages (int): Stages of the network. Default: 4.
        strides (Sequence[int]): Strides of the first block of each stage.
            Default: ``(1, 2, 2, 2)``.
        dilations (Sequence[int]): Dilation of each stage.
            Default: ``(1, 1, 1, 1)``.
        out_indices (Sequence[int]): Output from which stages. If only one
            stage is specified, a single tensor (feature map) is returned,
            otherwise multiple stages are specified, a tuple of tensors will
            be returned. Default: ``(3, )``.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
            Default: False.
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Default: -1.
        conv_cfg (dict | None): The config dict for conv layers. Default: None.
        norm_cfg (dict): The config dict for norm layers.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        zero_init_residual (bool): Whether to use zero init for last norm layer
            in resblocks to let them behave as identity. Default: True.

    Example:
        >>> from mmcls.models import ResNet
        >>> import torch
        >>> self = ResNet(depth=18)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 32, 32)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 64, 8, 8)
        (1, 128, 4, 4)
        (1, 256, 2, 2)
        (1, 512, 1, 1)
    """

    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self,
                 depth,
                 in_channels=3,
                 stem_channels=64,
                 base_channels=64,
                 expansion=None,
                 num_stages=4,
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(3, ),
                 style='pytorch',
                 deep_stem=False,
                 avg_down=False,
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 norm_eval=False,
                 with_cp=False,
                 zero_init_residual=True):
        super(ResNet_FRelu, self).__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
        self.depth = depth
        self.stem_channels = stem_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert num_stages >= 1 and num_stages <= 4
        self.strides = strides
        self.dilations = dilations
        assert len(strides) == len(dilations) == num_stages
        self.out_indices = out_indices
        assert max(out_indices) < num_stages
        self.style = style
        self.deep_stem = deep_stem
        self.avg_down = avg_down
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.with_cp = with_cp
        self.norm_eval = norm_eval
        self.zero_init_residual = zero_init_residual
        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        self.expansion = get_expansion(self.block, expansion)

        self._make_stem_layer(in_channels, stem_channels)

        self.res_layers = []
        _in_channels = stem_channels
        _out_channels = base_channels * self.expansion
        for i, num_blocks in enumerate(self.stage_blocks):
            stride = strides[i]
            dilation = dilations[i]
            res_layer = self.make_res_layer(
                block=self.block,
                num_blocks=num_blocks,
                in_channels=_in_channels,
                out_channels=_out_channels,
                expansion=self.expansion,
                stride=stride,
                dilation=dilation,
                style=self.style,
                avg_down=self.avg_down,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg)
            _in_channels = _out_channels
            _out_channels *= 2
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self._freeze_stages()

        self.feat_dim = res_layer[-1].out_channels

    def make_res_layer(self, **kwargs):
        return ResLayer(**kwargs)

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    def _make_stem_layer(self, in_channels, stem_channels):
        if self.deep_stem:
            self.stem = nn.Sequential(
                ConvModule(
                    in_channels,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    inplace=True),
                ConvModule(
                    stem_channels // 2,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    inplace=True),
                ConvModule(
                    stem_channels // 2,
                    stem_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    inplace=True))
        else:
            self.conv1 = build_conv_layer(
                self.conv_cfg,
                in_channels,
                stem_channels,
                kernel_size=7,
                stride=2,
                padding=3,
                bias=False)
            self.norm1_name, norm1 = build_norm_layer(
                self.norm_cfg, stem_channels, postfix=1)
            self.add_module(self.norm1_name, norm1)
            self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            if self.deep_stem:
                self.stem.eval()
                for param in self.stem.parameters():
                    param.requires_grad = False
            else:
                self.norm1.eval()
                for m in [self.conv1, self.norm1]:
                    for param in m.parameters():
                        param.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = getattr(self, f'layer{i}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def init_weights(self, pretrained=None):
        super(ResNet_FRelu, self).init_weights(pretrained)
        if pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)

            if self.zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        constant_init(m.norm3, 0)
                    elif isinstance(m, BasicBlock):
                        constant_init(m.norm2, 0)

    def forward(self, x):
        if self.deep_stem:
            x = self.stem(x)
        else:
            x = self.conv1(x)
            x = self.norm1(x)
            x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def train(self, mode=True):
        super(ResNet_FRelu, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()


@BACKBONES.register_module()
class ResNetV1d_FRelu(ResNet_FRelu):
    """ResNetV1d variant described in
    `Bag of Tricks <https://arxiv.org/pdf/1812.01187.pdf>`_.

    Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv
    in the input stem with three 3x3 convs. And in the downsampling block,
    a 2x2 avg_pool with stride 2 is added before conv, whose stride is
    changed to 1.
    """

    def __init__(self, **kwargs):
        super(ResNetV1d_FRelu, self).__init__(
            deep_stem=True, avg_down=True, **kwargs)

I reproduced your FReLU in mmclassification, but there is an serious overfitting.
For resnet50_batch256 wit FReLU,which should have 77.6% valid top-1 acc in your experiment. But in my experiment the valid top-1 acc is only 76.07%,and the train top-1 acc is 86.10%.
I try to solve it by ColorJitter,dropout,weight_decay。but they do not work.
Do you have a version of pytorch implementation?

how to apply in PSPNet

Hi,when I use FunnelAct in ResNet50 as the backbone of PSPNet with my own datasets,the mIoU is lower than the case of not use FunnelAct with the same epochs of 200. Is it necessary to use FunnelAct in PyramidPooling module of PSP? Whether it has different performance on different datasets?

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.