Giter Site home page Giter Site logo

nrel / pv_ice Goto Github PK

View Code? Open in Web Editor NEW
32.0 3.0 8.0 549.75 MB

An open-source tool to quantify Solar Photovoltaics (PV) Energy and Mass Flows in the Circular Economy, from a Reliability and Lifetime approach

Home Page: https://pv-ice.readthedocs.io/en/latest/

License: Other

Python 17.17% HTML 81.77% Jupyter Notebook 1.07%
circular-economy circularity-metrics reliability solar-energy circularity mass-flow repair reuse recycle photovoltaics lifetime

pv_ice's Introduction

Version DOI
License license
Documentation Documentation Status

PV ICE: PV in the Circular Economy, a Dynamic Energy and Materials Tool

This open-source tool explores the effects of Circular Economy (CE) pathways for photovoltaic (PV) materials. It can be used to quantify and assign a value framework to CE efforts including re-design, reduction, replacement, reuse, recycling, and lifetime and reliability improvements across the PV value chain. PV ICE enables tradeoff analysis through scenario comparisons, and is highly customizable through user inputs such as deployment schedules, module properties and component materials, and CE pathways.

The provided PV ICE module and material baselines leverage published data from many sources on PV manufacturing and predicted technological changes. Input data are being compiled here and the baselines are available here for use in other projects as well as for the PV ICE tool.

How it Works

This section provides a brief description of how the PV ICE tool works. FULL DOCUMENTATION CAN BE FOUND AT readthedocs.

Mass

PV ICE is a dynamic mass flow based tool. It takes in any deployment forecast of any evolving module design along with it's component materials and uses sophisticated lifetime and reliability parameters to calculate effective capacity, virgin material demand, and life cycle wastes. The calculator captures all the mass flows shown in the simplified diagram below for all years studied in a simulation (ex: 2020-2050).

Annually deployed cohorts of modules are tracked through the simulation, subjected to lifetime, degradation, and reliability parameters, and guided along user defined CE pathways (ex: resell, recycling). The PV ICE framework is designed for scenario comparisons (ex: different deployment schedules, module designs, or circular pathways) and is capable of both geospatial and temporal analysis (i.e. when and where materials will be demanded or are available).

Module and material properties are known to be variable with time, and PV ICE can capture this dynamic evolution of PV technology. Dynamic baseline inputs for crystalline silicon PV modules and component materials are provided in the PV_ICE \ baselines folder. These baselines are dervied from literature and report data. Module baselines capture the annual average crystalline silicon module (i.e. a market share weighted average of the silicon PV technologies deployed). Each material similarly is a market share weighted average of silicon PV technologies, compiled from multiple sources, most notably consistent with ITRPV data. Please see the Jupyter Journals (tutorials \ baseline development documentation) for the derivations and sources (baselines \ SupportingMaterials) of the provided c-Si baselines. Alternate module and material files can be created by the user, and an expanded set of PV technology baselines is planned for the future, including CdTe and perovskites.

Energy

The energy balance of renewable energy technologies is as important and the mass balance when evaluating sustainability. Additionally, few studies of Circular Economy (CE) pathways consider the energy return on investment of a particular pathway. PV ICE energy flows fill this analysis gap, and provide useful insights into the potential tradeoffs between mass and energy of CE pathways.

The energy flows of PV ICE are based on the mass flows. These energy flows, like the mass flows, are dynamic with time and are seperated into module and material energies. For each supply chain process step captured in the mass flows, an energy per module area or energy per material mass is captured as an input (ex: module manufacturing energy, energy to manufacture rolled glass from silica sand, energy to crush a module for recycling ). The energy demanded for each step is the sum of all electrical energy demands and all fuel/heating energy demands.

We provide an energy baseline for crystalline silicon modules and component materials. Data for these baselines is being compiled from literature and report data. For the complete derivation of the energy demands for crystalline silicon modules and materials, please see the Jupyter Journals (tutorials \ baseline development documentation) and (baselines \ SupportingMaterials). Alternate module and material files can be created by the user, and an expanded set of PV technology baselines is planned for the future, including CdTe and perovskites.

After running a mass flow simulation, an energy flow calculation can be run which will multiply the energy demands by the mass flows and calculate annual generation from the deployed modules. Results of this calculation provide annual, cumulative, and lifetime energy demands and energy generated. These values can be used to calculate energy balance metrics such as energy return on investment (EROI), net energy, and energy payback time (EPBT). These features are actively under development, so check back for updates soon!

Installation for PV ICE

PV ICE releases may be installed using the pip and conda tools. Please see the Installation page of the documentation for complete instructions.

PV ICE is compatible with Python 3.5 and above.

Install with:

pip install PV_ICE

For developer installation, download the repository, navigate to the folder location and install as:

pip install -e .

How to Get Started

After you have installed PV ICE, we recommend heading over to our tutorials jupyter journals (PV ICE \ docs \ tutorials). There you will find journals "0 - quick start Example" and "1 - Beginner Example" which can help guide you through your first simulation using the PV ICE provided crystalline silicon PV baselines. In journals 2-4 we walk you through modifications to the basic simulation, including modifying parameters with PV ICE functions to suit your analysis needs.

Some Analyses Featuring/Leveraging PV ICE

PV ICE has been used in a variety of published analyses, including:

High Impact Report: The Solar Futures Report and Circular Economy Technical Report

Ardani, Kristen, Paul Denholm, Trieu Mai, Robert Margolis, 
Eric O’Shaughnessy, Timothy Silverman, and Jarett Zuboy. 2021. 
“Solar Futures Study.” EERE DOE. 
https://www.energy.gov/eere/solar/solar-futures-study.

Heath, Garvin, Dwarakanath Ravikumar, Silvana Ovaitt, 
Leroy Walston, Taylor Curtis, Dev Millstein, Heather Mirletz, 
Heidi Hartman, and James McCall. 2022. 
“Environmental and Circular Economy Implications of Solar Energy
 in a Decarbonized U.S. Grid.” NREL/TP-6A20-80818. NREL.

Peer Reviewed Journals

H. Mirletz, S. Ovaitt, S. Sridhar, and T. M. Barnes. 2022. 
“Circular Economy Priorities for Photovoltaics in the Energy Transition.” 
PLOS ONE 17 (9): e0274351. https://doi.org/10.1371/journal.pone.0274351.

S. Ovaitt & H. Mirletz, S. Seetharaman, and T. Barnes, 
“PV in the Circular Economy, A Dynamic Framework Analyzing 
Technology Evolution and Reliability Impacts,” 
ISCIENCE, Jan. 2022, doi: https://doi.org/10.1016/j.isci.2021.103488.

There are other multiple publications citing PV ICE like PVSC, PVRW, etc. Please see the list in the readthedocs documentation.

Contributing

We need your help to make PV ICE a great tool! Please see the Contributing page for more on how you can contribute. The long-term success of PV ICE requires substantial community support.

License

PV_ICE open-source code is copyrighted by the Alliance for Sustainable Energy and licensed with BSD-3-Clause terms, found here.

Getting support

If you suspect that you may have discovered a bug or if you'd like to change something about CF-MFA, then please make an issue on our GitHub issues page.

Citing

If you use PV_ICE in a published work, please cite:

S. Ovaitt & H. Mirletz, S. Seetharaman, and T. Barnes, 
“PV in the Circular Economy, A Dynamic Framework Analyzing 
Technology Evolution and Reliability Impacts,” 
ISCIENCE, Jan. 2022, doi: https://doi.org/10.1016/j.isci.2021.103488.

and also please also cite the DOI corresponding to the specific version of PV_ICE that you used. PV_ICE DOIs are listed at Zenodo.org. For example for version 0.3.2:

S. Ovaitt, H. Mirletz, M. Mendez Ribo (2023). 
NREL/PV_ICE: v0.3.2 Release. Zenodo. 
https://doi.org/10.5281/zenodo.7651576

pv_ice's People

Contributors

acadiajean avatar cdeline avatar dependabot[bot] avatar dirkjordan avatar heathermirletz avatar macmribo avatar shirubana avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar

pv_ice's Issues

import data - convert units function needed

Internally the program assumes everything is grams, but if baseline has "kg" it shoudl be able to conver to.

Current solution is have all baselines in g. This might be okay but a function to doublecheck will be needed.

description or process changed for mat_MFG_scrap_Recycled_into_HQ ?

mat_MFG_scrap_Recycled_into_HQ [%]: float Material Manufacturing Scrap Recycled into High Quality in percentage. Percentage of manufacturing scrap which is recycled into high quality/high purity material and used for non-PV applications (open-loop).

https://pv-ice.readthedocs.io/en/latest/data.html

It used to be that material could either be low quality or high quality, and then if it is high quality it can go into PV; as it reads right now ti seems to be exclusive and if this column (column G) has values then it voids column H?

@heathermirletz

Installation Issues

Well, I'm sure at some point I did this correctly because even Heather installed it <2 months ago, but now it's not working.

It used to work by cloning, navigating to folder and then doing a pip install -e .

Now that doesnt even work.
Much less the pyppi, been stuck on that forever...

image

image

Broken link

The first four links in the file README.md are broken. The readthedocs hyperlink in the Peer Reviewed Journals section is also broken.

Handle data and materialdata indexes

Currently, data and mateiraldata is indexed in int. If different lengths (not same years), it crashes.

Ideally:

  1. Set indexes to PerdioIndex - year
  2. Clip years in materialdata that are not in data, and padd years that are missing from materialdata that are in data.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.