Giter Site home page Giter Site logo

stephane-caron / pypoman Goto Github PK

View Code? Open in Web Editor NEW
62.0 4.0 10.0 256 KB

Python module for polyhedral geometry

License: GNU General Public License v3.0

Python 100.00%
python polyhedron geometry double-description vertex-enumeration projection

pypoman's Introduction

Polyhedron manipulation in Python

Build Coverage Documentation PyPI version PyPI downloads

This library allows common operations over convex polyhedra such as polytope projection and vertex enumeration. Check out the API documentation for details.

Installation

Install system packages for Python and GLPK, for instance for Debian-based Linux distributions:

$ sudo apt-get install cython libglpk-dev python python-dev python-pip

Then, install the library by:

$ pip install pypoman

Some functions, such as point-polytope projection and polygon intersection, are optional and not installed by default. To enable all of them, run:

$ pip install pypoman[all]

Examples

Vertex enumeration

We can compute the list of vertices of a polytope described in halfspace representation by $A x \leq b$:

import numpy as np
from pypoman import compute_polytope_vertices

A = np.array([
    [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],
    [1,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  1,  1,  1,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  1,  1,  1,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1],
    [1,  0,  0,  1,  0,  0,  1,  0,  0,  1,  0,  0],
    [0,  1,  0,  0,  1,  0,  0,  1,  0,  0,  1,  0],
    [0,  0,  1,  0,  0,  1,  0,  0,  1,  0,  0,  1]])
b = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 1, 2, 3])

vertices = compute_polytope_vertices(A, b)

Halfspace enumeration

The other way round, assume we know the vertices of a polytope, and want to get its halfspace representation $A x \leq b$.

import numpy as np
from pypoman import compute_polytope_halfspaces

vertices = map(
    np.array,
    [[1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [0, 1, 1]],
)

A, b = compute_polytope_halfspaces(vertices)

Polytope projection

Let us project an $n$-dimensional polytope $A x \leq b$ over $x = [x_1\ \ldots\ x_n]$ onto its first two coordinates $proj(x) = [x_1 x_2]$:

from numpy import array, eye, ones, vstack, zeros
from pypoman import plot_polygon, project_polytope

n = 10  # dimension of the original polytope
p = 2   # dimension of the projected polytope

# Original polytope:
# - inequality constraints: \forall i, |x_i| <= 1
# - equality constraint: sum_i x_i = 0
A = vstack([+eye(n), -eye(n)])
b = ones(2 * n)
C = ones(n).reshape((1, n))
d = array([0])
ineq = (A, b)  # A * x <= b
eq = (C, d)    # C * x == d

# Projection is proj(x) = [x_0 x_1]
E = zeros((p, n))
E[0, 0] = 1.
E[1, 1] = 1.
f = zeros(p)
proj = (E, f)  # proj(x) = E * x + f

vertices = project_polytope(proj, ineq, eq, method='bretl')

We can then plot the projected polytope:

import pylab

pylab.ion()
pylab.figure()
plot_polygon(vertices)

See also

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.